989 resultados para in vitro culture establishment
Resumo:
ABSTRACT: BACKGROUND: Using an in vitro triple cell co-culture model consisting of human epithelial cells (16HBE14o-), monocyte-derived macrophages and dendritic cells, it was recently demonstrated that macrophages and dendritic cells create a transepithelial network between the epithelial cells to capture antigens without disrupting the epithelial tightness. The expression of the different tight junction proteins in macrophages and dendritic cells, and the formation of tight junction-like structures with epithelial cells has been demonstrated. Immunofluorescent methods combined with laser scanning microscopy and quantitative real-time polymerase chain reaction were used to investigate if exposure to diesel exhaust particles (DEP) (0.5, 5, 50, 125 mug/ml), for 24 h, can modulate the expression of the tight junction mRNA/protein of occludin, in all three cell types. RESULTS: Only the highest dose of DEP (125 mug/ml) seemed to reduce the occludin mRNA in the cells of the defence system however not in epithelial cells, although the occludin arrangement in the latter cell type was disrupted. The transepithelial electrical resistance was reduced in epithelial cell mono-cultures but not in the triple cell co-cultures, following exposure to high DEP concentration. Cytotoxicity was not found, in either epithelial mono-cultures nor in triple cell co-cultures, after exposure to the different DEP concentrations. CONCLUSION: We concluded that high concentrations of DEP (125 mug/ml) can modulate the tight junction occludin mRNA in the cells of the defence system and that those cells play an important role maintaining the epithelial integrity following exposure to particulate antigens in lung cells.
Resumo:
Prosthetic and osteosynthetic implants from metal alloys will be indispensable in orthopedic surgery, as long as tissue engineering and biodegradable bone substitutes do not lead to products that will be applied in clinical routine for the repair of bone, cartilage, and joint defects. Therefore, the elucidation of the interactions between the periprosthetic tissues and the implant remains of clinical relevance and several factors are known to affect the longevity of implants. Within this study, the effects of metal particles and surface topography on the recruitment of osteoclasts was investigated in vitro in a coculture of osteoblasts and bone marrow cells. The cells were grown in the presence of particles of different sizes and chemical composition or on metal discs with polished or sandblasted surfaces, respectively. At the end of the culture, newly formed osteoclasts were counted. Osteoclastogenesis was reduced when particles were added directly to the coculture. The effect depended on the size of the particles, small particles exerting stronger effects than larger ones. The chemical composition of the particles, however, did not affect the development of osteoclasts. In cocultures grown on sandblasted surfaces, osteoclasts developed at higher rates than they did in cultures on polished surfaces. The data demonstrate that wear particles and implant surfaces affect osteoclastogenesis and thus may be involved in the induction of local bone resorption and the formation of osteolytic lesions, leading eventually to the loosening of orthopedic implants.
Resumo:
BACKGROUND: Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE: Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
Resumo:
Background: Basophils constitute a rare leukocyte population known for their effector functions in inflammation and allergy, as well as more recently described immunoregulatory roles. Besides their low frequency, functional analysis of basophils is hindered by a short life span, inefficient ex vivo differentiation protocols, and lack of suitable cell models. A method to produce large quantities of basophils in vitro would facilitate basophil research and constitute a sought-after tool for diagnostic and drug testing purposes. Methods: A method is described to massively expand bone marrow–derived basophils in vitro. Myeloid progenitors are conditionally immortalized using Hoxb8 in the presence of interleukin-3 (IL-3) and outgrowing cell lines selected for their potential to differentiate into basophils upon shutdown of Hoxb8 expression. Results: IL-3-dependent, conditional Hoxb8-immortalized progenitor cell lines can be expanded and maintained in culture for prolonged periods. Upon shutdown of Hoxb8 expression, near-unlimited numbers of mature functional basophils can be differentiated in vitro within six days. The cells are end-differentiated and short-lived and express basophil-specific surface markers and proteases. Upon IgE- as well as C5a-mediated activation, differentiated basophils release granule enzymes and histamine and secrete Th2-type cytokines (IL-4, IL-13) and leukotriene C4. IL-3-deprivation induces apoptosis correlating with upregulation of the BH3-only proteins BCL-2-interacting mediator of cell death (BIM) and p53 upregulated modulator of apoptosis (PUMA) and downregulation of proviral integration site for Moloney murine leukemia virus 1 kinase (PIM-1). Conclusion: A novel method is presented to generate quantitative amounts of mouse basophils in vitro, which moreover allows genetic manipulation of conditionally immortalized progenitors. This approach may represent a useful alternative method to isolating primary basophils.
Resumo:
The objective of this study was to examine the potential utility of a commercially available sperm separation and purification product for the in vitro production of bovine embryos. Bovine oocytes were purchased from a commercial supplier, and matured oocytes were randomly allocated to one of two treatments. Oocytes were co-incubated with frozen-thawed semen washed twice with BoviPureTM (BoviPure group) or with modified Brackett-Oliphant medium (control group). After a 6-hour insemination period, oocytes were cultured in vitro for 8 days. Cleavage rate of embryos was determined 48 hours post-insemination, and blastocyst formation rate was assessed on day 8 of culture. The experiment was replicated three times, and data were analyzed using chi-square analysis. Washing of sperm in BoviPureTM had no effect (P>.05) on either cleavage rate (77.2%) or blastocyst development (21.6%) when compared with controls (71.9% and 17.1%, respectively). These results indicate that, under conditions of our study, the washing of sperm with BoviPureTM did not significantly enhance the ability to produce bovine embryos in vitro.
Resumo:
BACKGROUND CONTEXT The fate of human mesenchymal stem cells (hMSCs) supplied to the degenerating intervertebral disc (IVD) is still not fully understood and can be negatively affected by low oxygen, pH, and glucose concentration of the IVD environment. The hMSC survival and yield upon injection of compromised IVD could be improved by the use of an appropriate carrier and/or by predifferentiation of hMSCs before injection. PURPOSE To optimize hMSC culture conditions in thermoreversible hyaluronan-based hydrogel, hyaluronan-poly(N-isopropylacrylamide) (HA-pNIPAM), to achieve differentiation toward the disc phenotype in vitro, and evaluate whether preconditioning contributes to a better hMSC response ex vivo. STUDY DESIGN In vitro and ex vivo whole-organ culture of hMSCs. METHODS In vitro cultures of hMSCs were conducted in HA-pNIPAM and alginate for 1 week under hypoxia in chondropermissive medium alone and with the supplementation of transforming growth factor β1 or growth and differentiation factor 5 (GDF-5). Ex vivo, hMSCs were either suspended in HA-pNIPAM and directly supplied to the IVDs or predifferentiated with GDF-5 for 1 week in HA-pNIPAM and then supplied to the IVDs. Cell viability was evaluated by Live-Dead assay, and DNA, glycosaminoglycan (GAG), and gene expression profiles were used to assess hMSC differentiation toward the disc phenotype. RESULTS The HA-pNIPAM induced hMSC differentiation toward the disc phenotype more effectively than alginate: in vitro, higher GAG/DNA ratio and higher collagen type II, SOX9, cytokeratin-19, cluster of differentiation 24, and forkhead box protein F1 expressions were found for hMSCs cultured in HA-pNIPAM compared with those cultured in alginate, regardless of the addition of growth factors. Ex vivo, direct combination of HA-pNIPAM with the disc environment induced a stronger disc-like differentiation of hMSCs than predifferentiation of hMSCs followed by their delivery to the discs. CONCLUSIONS Hyaluronan-based thermoreversible hydrogel supports hMSC differentiation toward the disc phenotype without the need for growth factor supplementation in vitro and ex vivo. Further in vivo studies are required to confirm the suitability of this hydrogel as an effective stem cell carrier for the treatment of IVD degeneration.
Resumo:
BACKGROUND Patients with Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) are often exposed simultaneously to a few potentially culprit drugs. However, both the standard lymphocyte transformation tests (LTT) with proliferation as the assay end-point as well as skin tests, if done, are often negative. OBJECTIVE As provocation tests are considered too dangerous, there is an urgent need to identify the relevant drug in SJS/TEN and to improve sensitivity of tests able to identify the causative drug. METHODS Fifteen patients with SJS/TEN with the ALDEN score ≥ 6 and 18 drug-exposed controls were included. Peripheral blood mononuclear cells (PBMC) were isolated and cultured under defined conditions with drugs. LTT was compared to the following end-points: cytokine levels in cell culture supernatant, number of granzyme B secreting cells by ELISpot and intracellular staining for granulysin and IFNγ in CD3(+) CD4(+), CD3(+) CD8(+) and NKp46(+) cells. To further enhance sensitivity, the effect of IL-7/IL-15 pre-incubation of PBMC was evaluated. RESULTS Lymphocyte transformation tests was positive in only 4/15 patients (sensitivity 27%, CI: 8-55%). Similarly, with granzyme B-ELISpot culprit drugs were positive in 5/15 patients (sensitivity 33%, CI: 12-62%). The expression of granulysin was significantly induced in NKp46(+) and CD3(+) CD4(+) cells (sensitivity 40%, CI: 16-68% and 53%, CI: 27-79% respectively). Cytokine production could be demonstrated in 38%, CI: 14-68% and 43%, CI: 18-71% of patients for IL-2 and IL-5, respectively, and in 55%, CI: 23-83% for IFNγ. Pre-incubation with IL-7/IL-15 enhanced drug-specific response only in a few patients. Specificities of tested assays were in the range of 95 (CI: 80-99%)-100% (CI: 90-100%). CONCLUSIONS AND CLINICAL RELEVANCE Granulysin expression in CD3(+) CD4(+) , Granzyme B-ELISpot and IFNγ production considered together provided a sensitivity of 80% (CI: 52-96%) and specificity of 95% (80-99%). Thus, this study demonstrated that combining different assays may be a feasible approach to identify the causative drug of SJS/TEN reactions; however, confirmation on another group of patients is necessary.
Resumo:
A dietary energy restriction to 49% of total energy requirements was conducted with Red Holstein cows for three weeks in mid-lactation. At the last day of the restriction phase, primary bovine mammary epithelial cells (pbMEC) of eight restriction (RF) and seven control-fed (CF) cows were extracted out of one litre of milk and cultured. In their third passage, an immune challenge with the most prevalent, heat-inactivated mastitis pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was conducted. Lactoferrin (LF) was determined on gene expression and protein level. An enzyme-linked immunosorbent assay (ELISA) was developed to determine LF in milk samples taken twice weekly throughout the animal trial, beginning on day 20 pp (post-partum) until day 150 pp, in cell culture total protein and in cell culture supernatant. Milk LF increased throughout the lactation and decreased significantly during the induced energy deficiency in the RF group. At the beginning of realimentation, LF concentration increased immediately in the RF group and reached higher levels than before the induced deficit following the upward trend seen in the CF group. Cell culture data revealed higher levels (up to sevenfold up-regulation in gene expression) and significant higher LF protein concentration in the RF compared to the CF group cells. A further emphasized effect was found in E. coli compared to S. aureus exposed cells. The general elevated LF levels in the RF pbMEC group and the further increase owing to the immune challenge indicate an unexpected memory ability of milk-extracted mammary cells that were transposed into in vitro conditions and even displayed in the third passage of cultivation. The study confirms the suitability of the non-invasive milk-extracted pbMEC culture model to monitor the influence of feeding experiments on immunological situations in vivo.
Resumo:
Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.
Resumo:
It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle-protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and how this significantly influences the subsequent nanoparticle-cell interaction in vitro. Therefore, different surface charged superparamagnetic iron oxide nanoparticles were synthesized and characterized. Similar adsorbed protein profiles were identified following incubation in supplemented cell culture media, although cellular uptake varied significantly between the different particles. However, positively charged nanoparticles displayed a significantly lower colloidal stability than neutral and negatively charged particles while showing higher non-sedimentation driven cell-internalization in vitro without any significant cytotoxic effects. The results of this study strongly indicate therefore that an understanding of the aggregation state of NPs in biological fluids is crucial in regards to their biological interaction(s).
Resumo:
Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air–liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that – at least RME – can be considered a valuable alternative to pure fossil diesel.
Resumo:
Cyclosporine (CsA) has shown great benefit to organ transplant recipients, as an immunosuppressive drug. To optimize CsA immunosuppressive therapy, pharmacodynamic evaluation of serial patient serum samples after CsA administration, using mixed lymphocyte culture (MLC) assays, revealed in vitro serum immunosuppressive activity of a CsA-like, ether-extractable component, associated with good clinical outcome in vivo. Since the in vitro immunosuppressive CsA metabolites, M-17 and M-1, are erythrocyte-bound, the immunosuppressive activity demonstrated in patient serum suggests that other immunosuppressive metabolites need exist. To test this hypothesis and obtain CsA metabolites for study, ether-extracted bile from tritiated and nonradioactive CsA-treated pigs was processed by novel high performance liquid and thin-layer chromatography (HPLC and HPTLC) techniques. Initial MLC screening of potential metabolites revealed a component, designated M-E, to have immunosuppressive activity. Pig bile-derived M-E was characterized as a CsA metabolite, by radioactive CsA tracer studies, by 56% crossreactivity in CsA radioimmunoassay, and by mass spectrometric (MS) analysis. MS revealed a CsA ring structure, hydroxylated at a site other than at amino acid one. M-E was different than M-1 and M-17, as demonstrated by different retention properties for each metabolite, using HPTLC and a novel rhodamine B/ $\alpha$-cyclodextrin stain, and using HPLC, performed by Sandoz, that revealed M-E to be different than previously characterized metabolites. The immunosuppressive activity of M-E was quantified by determination of mean metabolite potency ratio in human MLC assays, which was found to be 0.79 $\pm$ 0.23 (CsA, 1.0). Similar to parent drug, M-E revealed inter-individual differences in its immunosuppressive activity. M-E demonstrates inhibition of IL-2 production by concanavalin A stimulated C3H mouse spleen cells, similar to CsA, as determined with an IL-2 dependent mouse cytotoxic T-cell line. ^
Resumo:
The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM.
Resumo:
An odorant's code is represented by activity in a dispersed ensemble of olfactory sensory neurons in the nose, activation of a specific combination of groups of mitral cells in the olfactory bulb and is considered to be mapped at divergent locations in the olfactory cortex. We present here an in vitro model of the mammalian olfactory system developed to gain easy access to all stations of the olfactory pathway. Mouse olfactory epithelial explants are cocultured with a brain slice that includes the olfactory bulb and olfactory cortex areas and maintains the central olfactory pathway intact and functional. Organotypicity of bulb and cortex is preserved and mitral cell axons can be traced to their target areas. Calcium imaging shows propagation of mitral cell activity to the piriform cortex. Long term coculturing with postnatal olfactory epithelial explants restores the peripheral olfactory pathway. Olfactory receptor neurons renew and progressively acquire a mature phenotype. Axons of olfactory receptor neurons grow out of the explant and rewire into the olfactory bulb. The extent of reinnervation exhibits features of a postlesion recovery. Functional imaging confirms the recovery of part of the peripheral olfactory pathway and shows that activity elicited in olfactory receptor neurons or the olfactory nerves is synaptically propagated into olfactory cortex areas. This model is the first attempt to reassemble a sensory system in culture, from the peripheral sensor to the site of cortical representation. It will increase our knowledge on how neuronal circuits in the central olfactory areas integrate sensory input and counterbalance damage.
Resumo:
The lack of a permissive cell culture system hampers the study of human parvovirus B19 (B19V). UT7/Epo is one of the few established cell lines that can be infected with B19V but generates none or few infectious progeny. Recently, hypoxic conditions or the use of primary CD36+ erythroid progenitor cells (CD36+ EPCs) have been shown to improve the infection. These novel approaches were evaluated in infection and transfection experiments. Hypoxic conditions or the use of CD36+ EPCs resulted in a significant acceleration of the infection/transfection and a modest increase in the yield of capsid progeny. However, under all tested conditions, genome encapsidation was impaired seriously. Further analysis of the cell culture virus progeny revealed that differently to the wild-type virus, the VP1 unique region (VP1u) was exposed partially and was unable to become further externalized upon heat treatment. The fivefold axes pore, which is used for VP1u externalization and genome encapsidation, might be constricted by the atypical VP1u conformation explaining the packaging failure. Although CD36+ EPCs and hypoxia facilitate B19V infection, large quantities of infectious progeny cannot be generated due to a failure in genome encapsidation, which arises as a major limiting factor for the in vitro propagation of B19V.