994 resultados para hydroxyl,


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field trial was undertaken to determine the influence of four commercially available film-forming polymers (Bond [alkyl phenyl hydroxyl polyoxyethylene], Newman Crop Spray 11E™ [paraffinic oil], Nu-Film P [poly-1-p menthene], and Spray Gard [di-1-p menthene]) on reducing salt spray injury on two woody species, evergreen oak (Quercus ilex L.) and laurel (Prunus laurocerasus L.). Irrespective of species, the film-forming polymers Nu-Film-P and Spay Gard did not provide any significant degree of protection against salt spray damage irrespective of concentration (1% or 2%) applied as measured by leaf chlorophyll concentrations, photosynthetic efficiency, visual leaf necrosis, foliar sodium and chloride content, and growth (height, leaf area). The film-forming polymer Newman Crop Spray 11E™ provided only 1-week protection against salt spray injury. The film-forming polymer Bond provided a significant (P < 0.05) degree of protection against salt spray injury 3 months after application as manifest by higher leaf chlorophyll content, photosynthetic efficiency, height and leaf area, and lower visual leaf necrosis and foliar Na and Cl content compared with nontreated controls. In conclusion, results indicate that application of a suitable film-forming polymer can provide a significant degree of protection of up to 3 months against salt spray injury in evergreen oak and laurel. Results also indicate that when applied at 1% or 2% solutions, no problems associated with phytotoxicity and rapid degradation on the leaf surface exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation-dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phytoestrogens genistein, daidzein and the daidzein metabolite equol have been shown previously to possess oestrogen agonist activity. However, following consumption of soya diets, they are found in the body not only as aglycones but also as metabolites conjugated at their 4'- and 7-hydroxyl groups with sulphate. This paper describes the effects of monosulphation on the oestrogen agonist properties of these three phytoestrogens in MCF-7 human breast cancer cells in terms of their relative ability to compete with [H-3]oestradiol for binding to oestrogen receptor (ER), to induce a stably transfected oestrogen-responsive reporter gene (ERE-CAT) and to stimulate cell growth. In no case did sulphation abolish activity. The 4'-sulphadon of genistein reduced oestrogen agonist activity to a small extent in whole-cell assays but increased the relative binding affinity to ER. The 7-sulphation of genistein, and also of equol, reduced oestrogen agonist activity substantially in all assays. By contrast, the position of monosulphation of daidzein acted in an opposing manner on oestrogen agonist activity. Sulphation at the 4'-position of daidzein resulted in a modest reduction in oestrogen agonist activity but sulphation of daidzein at the 7-position resulted in an increase in oestrogen agonist activity. Molecular modelling and docking studies suggested that the inverse effects of sulphation could be explained by the binding of daidzein into the ligand-binding domain of the ER in the opposite orientation compared with genistein and equol. This is the first report of sulphation enhancing activity of an isoflavone and inverse effects of sulphation between individual phytoestrogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein oxidation within cells exposed to oxidative free radicals has been reported to occur in an uninhibited manner with both hydroxyl and peroxyl radicals. In contrast, THP-1 cells exposed to peroxyl radicals (ROO center dot) generated by thermo decomposition of the azo compound AAPH showed a distinct lag phase of at least 6 h, during which time no protein oxidation or cell death was observed. Glutathione appears to be the source of the lag phase as cellular levels were observed to rapidly decrease during this period. Removal of glutathione with buthionine sulfoxamine eliminated the lag phase. At the end of the lag phase there was a rapid loss of cellular MTT reducing activity and the appearance of large numbers of propidium iodide/annexin-V staining necrotic cells with only 10% of the cells appearing apoptotic (annexin-V staining only). Cytochrome c was released into the cytoplasm after 12 h of incubation but no increase in caspase-3 activity was found at any time points. We propose that the rapid loss of glutathione caused by the AAPH peroxyl radicals resulted in the loss of caspase activity and the initiation of protein oxidation. The lack of caspase-3 activity appears to have caused the cells to undergo necrosis in response to protein oxidation and other cellular damage. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Soy isoflavones have been extensively studied because of their possible health-promoting effects. Genistein and daidzein, the major isoflavone aglycones, have received most attention; however, they undergo extensive metabolism in the gut and liver, which might affect their biological properties. 2. The antioxidant activity, free radical-scavenging properties and selected cellular effects of the isoflavone metabolites equol, 8-hydroxydaidzein, O-desmethylangiolensin, and 1,3,5 trihydroxybenzene were investigated in comparison with their parent aglycones, genistein and daidzein. 3. Electron spin resonance spectroscopy indicated that 8-hydroxydaidzein was the most potent scavenger of hydroxyl and superoxide anion radicals. Isoflavone metabolites also exhibited higher antioxidant activity than parent compounds in standard antioxidant (FRAP and TEAC) assays. However, for the suppression of nitric oxide production by activated macrophages, genistein showed the highest potency, followed by equol and daidzein. 4. The metabolism of isoflavones affects their free radical scavenging and antioxidant properties, and their cellular activity, but the effects are complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline LiH was studied in situ using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to investigate the effect water vapour has on the rate of production of the corrosion products, particularly LiOH. The reaction rate of the formation of surface LiOH was monitored by measurement of the hydroxyl (OH) band at 3676 cm(-1). The initial hydrolysis rate of LiH exposed to water vapour at 50% relative humidity was found to be almost two times faster than LiH exposed to water vapour at 2% relative humidity. The hydrolysis rate was shown to be initially very rapid followed by a much slower, almost linear rate. The change in hydrolysis rate was attributed to the formation of a coherent layer of LiOH on the LiH surface. Exposure to lower levels of water vapour appeared to result in the formation of a more coherent corrosion product, resulting in effective passivation of the surface to further attack from water. Crown Copyright (c) 2007 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[15-(CH3)-C-13-H-2]-dihydro-epi-deoxyarteannuin B (4a) has been fed to intact Artemisia annua plants via the root and three labeled metabolites (17a-19a) have been identified by 1D- and 2D-NMR spectroscopies. The in vivo transformations of 4a in A. annua are proposed to involve enzymatically-mediated processes in addition to possible spontaneous autoxidation. In the hypothetical spontaneous autoxidation pathway, the tri-substituted double bond in 4a appears to have undergone 'ene-type' reaction with oxygen to form an allylic hydroperoxide, which subsequently rearranges to the allylic hydroxyl group in the metabolite 3 alpha-hydroxy-dihydro-epi-deoxyarteannuin B (17a). In the enzymatically-mediated pathways, compound 17a has then been converted to its acetyl derivative, 3 alpha-acetoxy-dihydro-epi-deoxyarteannuin B (18a), while oxidation of 4a at the 'unactivated' 9-position has yielded 9 beta-hydroxy-dihydro-epi-deoxyarteannuin B (19a). Although all of the natural products artemisinin ( 1), arteannuin K ( 7), arteannuin L ( 8), and arteannuin M ( 9) have been suggested previously as hypothetical metabolites from dihydro-epi-deoxyarteannuin B in A. annua, none were isolated in labeled form in this study. It is argued that the nature of the transformations undergone by compound 4a are more consistent with a degradative metabolism, designed to eliminate this compound from the plant, rather than with a role as a late precursor in the biosynthesis of artemisinin or other natural products from A. annua. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G3B3 and G2MP2 calculations using Gaussian 03 have been carried out to investigate the protonation preferences for phenylboronic acid. All nine heavy atoms have been protonated in turn. With both methodologies, the two lowest protonation energies are obtained with the proton located either at the ipso carbon atom or at a hydroxyl oxygen atom. Within the G3B3 formalism, the lowest-energy configuration by 4.3 kcal . mol(-1) is found when the proton is located at the ipso carbon, rather than at the electronegative oxygen atom. In the resulting structure, the phenyl ring has lost a significant amount of aromaticity. By contrast, calculations with G2MP2 show that protonation at the hydroxyl oxygen atom is favored by 7.7 kcal . mol(-1). Calculations using the polarizable continuum model (PCM) solvent method also give preference to protonation at the oxygen atom when water is used as the solvent. The preference for protonation at the ipso carbon found by the more accurate G3B3 method is unexpected and its implications in Suzuki coupling are discussed. (C) 2006 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical composition and dissociation behaviour of water adsorbed on clean and oxygen pre-covered Pd{111} was studied using high-resolution time-resolved and temperature-programmed X-ray photoelectron spectroscopy. We find that water remains intact at all temperatures up to desorption on the clean surface and at high oxygen coverage(0.69 ML) when a surface oxide is formed. The highest desorption peaks occur at 163 K from the clean surface and at 172 K from the surface oxide. At the intermediate coverage of 0.20 ML oxygen reacts with coadsorbed water at 155 K, to generate a mixed H2O/OH layer exhibiting a (root 3- x root 3)R30 degrees diffraction pattern, which is stable up to 177 K. The measured ratio between intact water and the hydroxyl species in this layer varies between 1.5 and 2 depending on temperature. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of water and coadsorption with oxygen on Rh{111} under ultrahigh vacuum conditions was studied using synchrotron-based photoemission and photoabsorption spectroscopy. Water adsorbs intact on the clean surface at temperatures below 154 K. Irradiation with x-rays, however, induces fast dissociation and the formation of a mixed OH+H(2)O layer indicating that the partially dissociated layer is thermodynamically more stable. Coadsorption of water and oxygen at a coverage below 0.3 monolayers has a similar effect, leading to the formation of a hydrogen-bonded network of water and hydroxyl molecules at a ratio of 3:2. The partially dissociated layers are more stable than chemisorbed intact water with the maximum desorption temperatures up to 30 K higher. For higher oxygen coverage, up to 0.5 monolayers, water does not dissociate and an intact water species is observed above 160 K, which is characterized by an O 1s binding energy 0.6 eV higher than that of chemisorbed water and a high desorption temperature similar to the partially dissociated layer. The extra stabilization is most likely due to hydrogen bonds with atomic oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.