926 resultados para human cells
Resumo:
Inducible nitric oxide synthase (iNOS) production of nitric oxide (NO) has been mostly associated with so-called nitrosative stress or interaction with superoxide anion. However, recent investigations have indicated that, as for the other isoenzymes producing NO, guanylyl cyclase (GC) is a very sensitive target of iNOS activity. To further investigate this less explored signaling, the NO-cyclic guanosine 3'-5'-monophosphate (NO-cGMP)-induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation on serine 239 was investigated in human embryonic kidney 293 cells (HEK cells). First, the expression and activity of alpha2 and beta1 NO-sensitive GC subunits was determined by Western blot analysis, reverse transcription-polymerase chain reaction and NO donors administration. Then, the expression of a functional cGMP-dependent protein kinase I (PKGI) was verified by addition of 8-Br-cGMP followed by determination of phosphorylation of VASP on serine 239. Finally, iNOS activation of this signaling pathway was characterized after transfection of HEK cells with human iNOS cDNA. Altogether our data show that iNOS-derived NO activates endogenous NO-sensitive GC and leads to VASP phosphorylation in HEK cells.
Resumo:
To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway.
Resumo:
Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO) is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS) for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2(+)-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue), might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans.
Resumo:
Nitric oxide (NO) produced by inducible NO synthase (iNOS, NOS-2) is an important component of the macrophage-mediated immune defense toward numerous pathogens. Murine macrophages produce NO after cytokine activation, whereas, under similar conditions, human macrophages produce low levels or no NO at all. Although human macrophages can express iNOS mRNA and protein on activation, whether they possess the complete machinery necessary for NO synthesis remains controversial. To define the conditions necessary for human monocytes/macrophages to synthesize NO when expressing a functional iNOS, the human monocytic U937 cell line was engineered to synthesize this enzyme, following infection with a retroviral expression vector containing human hepatic iNOS (DFGiNOS). Northern blot and Western blot analysis confirmed the expression of iNOS in transfected U937 cells both at the RNA and protein levels. NOS enzymatic activity was demonstrated in cell lysates by the conversion of L-[3H]arginine into L-[3H]citrulline and the production of NO by intact cells was measured by nitrite and nitrate accumulation in culture supernatants. When expressing functional iNOS, U937 cells were capable of releasing high levels of NO. NO production was strictly dependent on supplementation of the culture medium with tetrahydrobiopterin (BH4) and was not modified by stimulation of the cells with different cytokines. These observations suggest that (1) human monocytic U937 cells contain all the cofactors necessary for NO synthesis, except BH4 and (2) the failure to detect NO in cytokine-stimulated untransfected U937 cells is not due to the presence of a NO-scavenging molecule within these cells nor to the destabilization of iNOS protein. DFGiNOS U937 cells represent a valuable human model to study the role of NO in immunity toward tumors and pathogens.
Resumo:
DNA cytosine methylation has been demonstrated to be a central epigenetic modification that has essential roles in a myriad of cellular processes. Some examples of these include gene regulation, DNA-protein interactions, cellular differentiation, X-inactivation, maintenance of genome integrity by suppressing transposable elements and viruses, embryogenesis, genomic imprinting and tumourigenesis. This list is increasingly growing thanks to recent advances in genome-wide technologies, like Whole Genome Bisulfite Sequencing (WGBS-Seq). The development of this technology in research has allowed the identification of new features of the DNA methylation landscape that was not possible using previous technologies, like Partially Methylated Domains (PMDs). PMDs have been found in several cell lines, as well as in both healthy and cancer primary samples. They have been described as regions with high variability in methylation levels across individual CpG sites and intermediate methylation levels on average with respect to the genome. Here, we performed an extensive search of PMDs in a big dataset of different haematopoietic primary cells from both myeloid and lymphoid lineages. We found and characterized significant PMDs in plasma B cells, confirming that PMDs are a phenomenon that is restricted to certain differentiated cells. Additionally, we found loci aberrantly hypomethylated in a myeloma sample which overlapped with plasma B cell PMDs. Genome-wide comparison of the myeloma and plasma B cell sample revealed that this is probably also the case for other loci.
Resumo:
The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.
Resumo:
Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.
Resumo:
AIMS: Mitofusin-2 (Mfn2) expression is dysregulated in vascular proliferative disorders and its overexpression attenuates the proliferation of vascular smooth muscle cells (VSMCs) and neointimal lesion development after balloon angioplasty. We sought to gain insight into the mechanisms that control Mfn2 expression in VSMCs. METHODS AND RESULTS: We cloned and characterized 2 kb of the 5'-flanking region of the human Mfn2 gene. Its TATA-less promoter contains a CpG island. In keeping with this, 5'-rapid amplification of cDNA ends revealed six transcriptional start sites (TSSs), of which TSS2 and TSS5 were the most frequently used. The strong CpG island was found to be non-methylated under conditions characterized by large differences in Mfn2 gene expression. The proximal Mfn2 promoter contains six putative Sp1 motifs. Sp1 binds to the Mfn2 promoter and its overexpression activates the Mfn2 promoter in VSMCs. Chemical inhibition of Sp1 reduced Mfn2 expression, and Sp1 silencing reduced transcriptional activity of the Mfn2 promoter. In keeping with this view, Sp1 and Mfn2 mRNA levels were down-regulated in the aorta early after an atherogenic diet in apolipoprotein E-knockout mice or in VSMCs cultured in the presence of low serum. CONCLUSION: Sp1 is a key factor in maintaining basal Mfn2 transcription in VSMCs. Given the anti-proliferative actions of Mfn2, Sp1-induced Mfn2 transcription may represent a mechanism for prevention of VSMC proliferation and neointimal lesion and development.
Resumo:
AIMS: Mitofusin-2 (Mfn2) expression is dysregulated in vascular proliferative disorders and its overexpression attenuates the proliferation of vascular smooth muscle cells (VSMCs) and neointimal lesion development after balloon angioplasty. We sought to gain insight into the mechanisms that control Mfn2 expression in VSMCs. METHODS AND RESULTS: We cloned and characterized 2 kb of the 5'-flanking region of the human Mfn2 gene. Its TATA-less promoter contains a CpG island. In keeping with this, 5'-rapid amplification of cDNA ends revealed six transcriptional start sites (TSSs), of which TSS2 and TSS5 were the most frequently used. The strong CpG island was found to be non-methylated under conditions characterized by large differences in Mfn2 gene expression. The proximal Mfn2 promoter contains six putative Sp1 motifs. Sp1 binds to the Mfn2 promoter and its overexpression activates the Mfn2 promoter in VSMCs. Chemical inhibition of Sp1 reduced Mfn2 expression, and Sp1 silencing reduced transcriptional activity of the Mfn2 promoter. In keeping with this view, Sp1 and Mfn2 mRNA levels were down-regulated in the aorta early after an atherogenic diet in apolipoprotein E-knockout mice or in VSMCs cultured in the presence of low serum. CONCLUSION: Sp1 is a key factor in maintaining basal Mfn2 transcription in VSMCs. Given the anti-proliferative actions of Mfn2, Sp1-induced Mfn2 transcription may represent a mechanism for prevention of VSMC proliferation and neointimal lesion and development.
Resumo:
Acute lung injury (ALI) is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC) on mechanical tension and barrier integrity in human alveolar epithelial cells (A549) exposed to thrombin. Cells were pretreated for 3 h with APC (50 mg/ml) or vehicle (control). Subsequently, thrombin (50 nM) or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.
Resumo:
Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington's disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.
Resumo:
Cisplatin is very effective in the treatment of metastatic breast cancer. However, the development of cellular resistance is a serious problem in cisplatin chemotherapy. In the present work, the effects of dipyridamole (DPM) on the cellular accumulation and cytotoxicity of cisplatin was studied in cisplatinsensitive (MDA/S) and cisplatinresistant (MDA/R) human breast cancer cells. In the presence of 30 µM DPM, the IC50 of cisplatin was reduced by 39% for both cell lines. Combination index analysis revealed that cisplatin and dipyridamole interact synergistically in MDA/R cells. In the MDA/S cells, the cellular accumulation of cisplatin increased by 57 ± 8% in the presence of 30 µM DPM. In the MDA/R cells, the cellular accumulation of cisplatin remained the same with or without 30 µM DPM. The results suggest that the enhancement of cisplatin cytotoxicity by DPM in MDA/S cells may be related to a DPM-induced increase in cisplatin accumulation, but the enhanced cytotoxicity in MDA/R cells employs a mechanism that does not involve an increase in the cellular accumulation of cisplatin.