784 resultados para homeostatsis -- psychological aspects
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
We describe in some detail the process of development of a dynamic model of a three wheeled vehicle using ADAMS-CAR. We first describe the rigid body model, and then the modeling of structural flexibilities. The aim of this report is to document procedural details of such modeling, with a view to presenting more research and development oriented investigations in the future. The contents of this report may also be of interest to practicing engineers engaged in multi-body dynamics modeling of wheeled vehicles.
Resumo:
The possible chemical reactions that take place during the growth of single crystal films of silicon on sapphire (SOS) are analyzed thermodynamically. The temperature for the growth of good quality epitaxial films is dependent on the extent of water vapor present in the carrier gas. The higher the water vapor content the higher the temperature needed to grow SOS films. Due to the interaction of silicon with sapphire at elevated temperatures, SOS films are doped with aluminum. The extent of doping is dependent on the conditions of film growth. The doping by aluminum from the substrate increases with increasing growth temperatures and decreasing growth rates. The equilibrium concentrations of aluminum at the silicon-sapphire interface are calculated as a function of deposition temperature, assuming that SiO2 or Al6Si2O13 are the products of reaction. It is most likely that the product could be a solid solutio n of Al2O3 in SiO2. The total amount of aluminum released due to the interaction between silicon and sapphire will account only for the formation of not more than one monolayer of reaction product unless the films are annealed long enough at elevated temperatures. This value is in good agreement with the recently reported observations employing high resolution transmission electron microscopy.
Resumo:
[(eta(6)-C(10)H(14))RuCl(mu-Cl)](2) (eta(6)-C(10)H(14) = eta(6)-p-cymene) was subjected to a bridge-splitting reaction with N,N',N `'-triarylguanidines, (ArNH)(2)C=NAr, in toluene at ambient temperature to afford [(eta(6)-C(10)H(14))RuCl{kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (1), C(6)H(4)(OMe)-2 (2), C(6)H(4)Me-2 (3), and C(6)H(3)Me(2)-2,4 (4)) in high yield with a view aimed at understanding the influence of substituent(s) on the aryl rings of the guanidine upon the solid-state structure, solution behavior, and reactivity pattern of the products. Complexes 1-3 upon reaction with NaN(3) in ethanol at ambient temperature afforded [(eta(6)-C(10)H(14))RuN(3){kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (5), C(6)H(4)(OMe)-2 (6), and C(6)H(4)Me-2 (7)) in high yield. [3 + 2] cycloaddition reaction of 5-7 with RO(O)C-C C-C(O)OR (R = Et (DEAD) and Me (DMAD)) (diethylacetylenedicarboxylate, DEAD; dimethylacetylenedicarboxylate, DMAD) in CH(2)Cl(2) at ambient temperature afforded [(eta(6)-C(10)H(14))Ru{N(3)C(2)(C(O)OR)(2)}{kappa(2)(N,N')((ArN)(2) C-N(H)Ar)}center dot xH(2)O (x = 1, R = Et, Ar = C(6)H(4)Me-4 (8 center dot H(2)O); x = 0, R = Me, Ar = C(6)H(4)(OMe)-2 (9), and C(6)H(4)Me-2 (10)) in moderate yield. The molecular structures of 1-6, 8 center dot H(2)O, and 10 were determined by single crystal X-ray diffraction data. The ruthenium atom in the aforementioned complexes revealed pseudo octahedral ``three legged piano stool'' geometry. The guanidinate ligand in 2, 3, and 6 revealed syn-syn conformation and that in 4, and 10 revealed syn-anti conformation, and the conformational difference was rationalized on the basis of subtle differences in the stereochemistry of the coordinated nitrogen atoms caused by the aryl moiety in 3 and 4 or steric overload caused by the substituents around the ruthenium atom in 10. The bonding pattern of the CN(3) unit of the guanidinate ligand in the new complexes was explained by invoking n-pi conjugation involving the interaction of the NHAr/N(coord)Ar lone pair with C=N pi* orbital of the imine unit. Complexes 1, 2, 5, 6, 8 center dot H(2)O, and 9 were shown to exist as a single isomer in solution as revealed by NMR data, and this was ascribed to a fast C-N(H)Ar bond rotation caused by a less bulky aryl moiety in these complexes. In contrast, 3 and 10 were shown to exist as a mixture of three and five isomers in about 1:1:1 and 1.0:1.2:2:7:3.5:6.9 ratios, respectively in solution as revealed by a VT (1)H NMR, (1)H-(1)H COSY in conjunction with DEPT-90 (13)C NMR data measured at 233 K in the case of 3. The multiple number of isomers in solution was ascribed to the restricted C-N(H)(o-tolyl) bond rotation caused by the bulky o-tolyl substituent in 3 or the aforementioned restricted C-NH(o-tolyl) bond rotation as well as the restricted ruthenium-arene(centroid) bond rotation caused by the substituents around the ruthenium atom in 10.
Resumo:
The purpose of this article is to consider two themes, both of which emanate from and involve the Kobayashi and the Carath,odory metric. First, we study the biholomorphic invariant introduced by B. Fridman on strongly pseudoconvex domains, on weakly pseudoconvex domains of finite type in C (2), and on convex finite type domains in C (n) using the scaling method. Applications include an alternate proof of the Wong-Rosay theorem, a characterization of analytic polyhedra with noncompact automorphism group when the orbit accumulates at a singular boundary point, and a description of the Kobayashi balls on weakly pseudoconvex domains of finite type in C (2) and convex finite type domains in C (n) in terms of Euclidean parameters. Second, a version of Vitushkin's theorem about the uniform extendability of a compact subgroup of automorphisms of a real analytic strongly pseudoconvex domain is proved for C (1)-isometries of the Kobayashi and Carath,odory metrics on a smoothly bounded strongly pseudoconvex domain.
Resumo:
The SrNaBi2Nb3O12 (SNBN) powder was prepared via the conventional solid-state reaction method. X-ray structural studies confirmed the phase to be a three-layered member of the Aurivillius family of oxides. The SNBN ceramics exhibited the typical characteristics of relaxor ferroelectrics, associated with broad and dispersive dielectric maxima. The variation of temperature of dielectric maxima (T-m) with frequency obeyed the Vogel-Fulcher relationship. Relaxor behavior was believed to be arising from the cationic disorder at A-site. Pinched ferroelectric hysteresis loops were observed well above T-m.
Resumo:
The pivotal point of the paper is to discuss the behavior of temperature, pressure, energy density as a function of volume along with determination of caloric EoS from following two model: w(z)=w (0)+w (1)ln(1+z) & . The time scale of instability for this two models is discussed. In the paper we then generalize our result and arrive at general expression for energy density irrespective of the model. The thermodynamical stability for both of the model and the general case is discussed from this viewpoint. We also arrive at a condition on the limiting behavior of thermodynamic parameter to validate the third law of thermodynamics and interpret the general mathematical expression of integration constant U (0) (what we get while integrating energy conservation equation) physically relating it to number of micro states. The constraint on the allowed values of the parameters of the models is discussed which ascertains stability of universe. The validity of thermodynamical laws within apparent and event horizon is discussed.
Resumo:
For a fixed positive integer k, a k-tuple total dominating set of a graph G = (V. E) is a subset T D-k of V such that every vertex in V is adjacent to at least k vertices of T Dk. In minimum k-tuple total dominating set problem (MIN k-TUPLE TOTAL DOM SET), it is required to find a k-tuple total dominating set of minimum cardinality and DECIDE MIN k-TUPLE TOTAL DOM SET is the decision version of MIN k-TUPLE TOTAL DOM SET problem. In this paper, we show that DECIDE MIN k-TUPLE TOTAL DOM SET is NP-complete for split graphs, doubly chordal graphs and bipartite graphs. For chordal bipartite graphs, we show that MIN k-TUPLE TOTAL DOM SET can be solved in polynomial time. We also propose some hardness results and approximation algorithms for MIN k-TUPLE TOTAL DOM SET problem. (c) 2012 Elsevier B.V. All rights reserved.