924 resultados para hollow Au–Ag alloy
Resumo:
A high-efficiency and low-cost spongelike Au/Pt core/shell electrocatalyst with hollow cavity has been facilely obtained via a simple two-step wet chemical process. Hollow gold nanospheres were first synthesized via a modified galvanic replacement reaction between Co nanoparticles in situ produced and HAUCl(4). The as-prepared gold hollow spheres were employed as seeds to further grow spongelike Pt shell. It is found that the surface of this hybrid nanomaterial owns many Pt nanospikes, which form a spongelike nanostructure. All experimental data including scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis-near-infrared spectroscopy have been employed to characterize the obtained Au/Pt hybrid nanomaterial. The rapid development of fuel cell has inspired us to investigate the electrocatalytic properties for dioxygen and methanol of this novel hybrid nanomaterial. Spongelike hybrid nanomaterial mentioned here exhibits much higher catalytic activity for dioxygen reduction and methanol oxidation than the common Pt electrode.
Resumo:
A simple method to prepare titania nanomaterials of core-shell structure, hollow nanospheres and mesoporous nanoparticles has been developed. The core-shell nanostructures with NH4Cl as core and TiO2 center dot xH(2)O-NH4Cl as shell were prepared in nonaqueous system by the deposition on the surface of the aggregated NH4Cl crystals, which could be transformed into mesoporous anatase nanoparticles or hollow nanospheres by calcination at 500A degrees C or extraction with methanol, respectively. The hierarchical mesoporous nanostructures benefited the photocatalytic activities of the resultant titania nanomaterials, demonstrated by the UV light photodegradation of Methyl Orange.
Resumo:
In this contribution, we for the first time report the synthesis of raspberry-like hierarchical Au/Pt nanoparticle (NP) assembling hollow spheres (RHAHS) with pore structure and complex morphology through one in situ sacrificial template approach without any post-treatment procedure. This method has some clear advantages including simplicity, quickness, high quality, good reproducibility, and no need of a complex post-treatment process (removing templating). Furthermore, the present method could be extended to other metal-based NP assembling hollow spheres. Most importantly, the as-prepared RHAHS exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR). For instance, the present RHAHS-modified electrode exhibited more positive potential (the half-wave potential at about 0.6 V), higher specific activity, and higher mass activity for ORR than that of commercial platinum black (CPB). Rotating ring-disk electrode (RRDE) voltarnmetry demonstrated that the RHAHS-modified electrode could almost catalyze a four-electron reduction of O-2 to H2O in a 0.5 M air-saturated H2SO4 solution.
Resumo:
The ageing behavior of an extruded Mg-7Y-4Gd-0.5Zn-0.4Zr alloy during ageing at 250 degrees C has been investigated. Two types of phases have been observed during the ageing process. One is a lamellar phase with a 14H long periodic stacking structure, the other is the beta' phase with an ellipsoidal morphology. The increased mechanical properties of the peak-aged alloy are mainly ascribed to the presence of both of these phases at peak hardness.
Resumo:
Die cast AZ91-xYmm (x = 0-0.8 wt.%) magnesium alloys with excellent tensile properties and corrosion resistance behavior were successfully prepared by a simple addition of yttrium-rich misch metal (Ymm) to AZ91. Influences of Ymm on the microstructure, mechanical properties and corrosion behavior of AZ91 were investigated. The results showed that addition of Ymm to die cast AZ91 alloy could re. ne the microstructure including primary alpha-Mg and eutectic beta-Mg17Al12. When the content of Ymm reached 0.8 wt.% a small quantity of Al2Y phase would form. The tensile properties were improved greatly with addition of Ymm to AZ91. The creep rate of the AZ91-Ymm alloys, tested at 150 degrees C/50MPa, was one order of magnitude lower than that of AZ91. When addition of Ymm was more than 0.3 wt.%, the salt-spray corrosion resistance of AZ91-Ymm alloys could be 30-40 times of that of AZ91. The improvement of corrosion resistance with addition of Ymm was confirmed by the results of electrochemical polarization experiments. Mechanism of the improvement of mechanical properties and corrosion behavior caused by Ymm was also discussed.
Resumo:
Microstructures and mechanical properties of the Mg-5Y-4Gd-xZn-0.4Zr alloys have been investigated. These results show that the Mg-5Y-4Gd-0.5Zn-0.4Zr alloy in the peak-aged condition exhibits the highest tensile strength, and the values of the ultimate tensile strength and yield tensile strength are 370 and 300 MPa, respectively. It is suggested that addition of 0.5% Zn has a great effect on age hardening response. The long periodic stacking structure has been found in these Zn-containing alloys, and the volume fraction of this phase increases with increasing Zn addition. This phase plays an important role in improvement of the mechanical properties, especially for the elongations. The beta' phase precipitates during the ageing process are responsible for the improvement of the mechanical properties of the alloys in the peak-aged condition.
Resumo:
Ti45Zr35Ni17Cu3 amorphous and icosahedral quasicrystal line (I-phase) powders were synthesized by mechanical alloying (MA) and subsequent annealing, the phase structure and hydrogen absorption properties of two powders were investigated. XRD analysis indicated that the MAed powder was an amorphous phase and annealed powder was an I-phase. Two alloy exhibited excellent hydrogen adsorption property and started to absorb hydrogen without induction time. PCT measurement showed that the plateau pressure of the amorphous powders was obviously higher than that of the I-phase powders. After the first hydrogen cycling, the partial amorphous phase changed to (Zr, Ti)H-2 phases, and the I-phase was steady. Similar hydride phases Ti2ZrH4 and (Zr, Ti)H-2 were also formed after the second hydrogen cycling for the amorphous and I-phase alloy powders.
Resumo:
A bulk alloy which consists of the single icosahedral quasicrystalline phase (I-phase) in Ti45Zr35Ni17CU3 alloy has been fabricated by mechanical alloying and subsequent pulse discharge sintering technique. Crystallographic structure analyses show that the bulk alloy is an I-phase. The transport properties of the bulk alloy are examined, and the results show that the room-temperature thermal conductivity is 5.347 W K-(1) m(-1), and the electrical conductivity decreases with increasing the temperature from 300 to 450K. The Seebeck coefficient is negative at the temperature range from 300 to 360K, and changes to positive from 370 to 450K. Hall effect measurements indicate the bulk I-phase alloy has a high carrier concentration. The specific heat capacity increases when the temperature increases from 280 to 324 K.
Resumo:
Icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy was ball-milled with 30 mass% La0.9Zr0.1Ni4.5Al0.5 alloy (LaNi5 phase), the effect of the milling time on crystallographic and electrochemical characteristics of the alloy powder was investigated. The amount of amorphous phase increased with increasing milling time from 60 to 360 min, and the LaNi5 phase cannot be observed when milling time was 240 min or more. The maximum discharge capacity and high-rate dischargeability of milled alloy electrodes were obviously higher than those of the alloy electrode before milling. The cycling capacity retention rate after 40 cycles increased from 52.8% (t = 60 min) to 62.9% (t = 360 min).
Resumo:
Mg-7 mass%Gd-x mass%Y (x = 0, 1, 3 and 5) alloys were prepared by casting method, and the microstructures, age hardening behavior and mechanical properties have been investigated. The results show that the addition of Y to the binary Mg-7Gd alloy could reduce the grain size of the as-cast alloys, and enhance the age hardening response and improve mechanical properties during the investigated temperature range. The Mg-7Gd-5Y alloy exhibits maximum ultimate tensile strength and yield strength at peak hardness, and the values are 258 and 167 MPa at room temperature, and 212 and 140 MPa at 250 degrees C, respectively, which is about 1.8 times as high as the Mg-7Gd binary alloy. When x is more than 3, the amount of Mg-5 (Gd,Y) phase is observed at the peak hardness of aged alloys. The significant improvement of the tensile strength at peak hardness is mainly attributed to the fine dispersion of the beta-Mg-5(Gd,Y) precipitate.
Resumo:
Microstructure and mechanical properties of as-cast and heat-treated Mg–12.3Zn–5.8Y–1.4Al (ZYA1261) alloy were investigated. The phase compositions of the as-cast alloy are -Mg, Mg3YZn6 (I-phase), Mg3Y2Zn3 (W-phase), Mg12YZn (Z-phase), Mg24Y5, MgZn and a small quantity of Al-containing phase. The phase compositions change with various heat treatment conditions. The highest Vickers hardness is obtained in the alloy aged at 200 ◦C for 5 h, the transmission electron microscopy indicated that fine scale Z-phase precipitates in the matrix. The tensile properties of the as-cast and heat-treated alloys were reported.