904 resultados para forest owners
Resumo:
Duo Show: John Russell & Dan Mitchell.
Resumo:
Community resilience is widely understood as a critical element in the relatively under-explored concept of social resilience. Through engaging with ‘more-than-human’ literatures, a more expansive view of the ‘social’ emerges, which repositions individuals as networked and agency as relational. This moves resilience away from its hegemonic positioning as a neoliberal strategy of individualisation and responsibilisation, with it instead emerging as an everyday ‘doing’ embedded in the human and non-human networks of relationality that we form and are formed by. The paper develops this socio-cultural conceptualisation through an original and empirically grounded discussion of Finnish farm communities and the role of the forest in developing, maintaining and enhancing these essential, connective assemblages. Resilience becomes conceptualised as dynamic, uneven, multiple and contextual performances or resiliences. While this further problematizes the comparative measurement and operationalisation of resilience, its networked and relational nature arguably offers a more inclusive and ethically grounded concept that, furthermore, negates the socio-ecological divide that persists in resilience thinking.
Resumo:
We present a palaeoecological investigation of pre-Columbian land use in the savannah “forest island” landscape of north-east Bolivian Amazonia. A 5700 year sediment core from La Luna Lake, located adjacent to the La Luna forest island site, was analysed for fossil pollen and charcoal. We aimed to determine the palaeoenvironmental context of pre-Columbian occupation on the site and assess the environmental impact of land use in the forest island region. Evidence for anthropogenic burning and Zea mays L. cultivation began ~2000 cal a BP, at a time when the island was covered by savannah, under drier-than-present climatic conditions. After ~1240 cal a BP burning declined and afforestation occurred. We show that construction of the ring ditch, which encircles the island, did not involve substantial deforestation. Previous estimates of pre-Columbian population size in this region, based upon labour required for forest clearance, should therefore be reconsidered. Despite the high density of economically useful plants, such as Theobroma cacao, in the modern forest, no direct pollen evidence for agroforestry was found. However, human occupation is shown to pre-date and span forest expansion on this site, suggesting that here, and in the wider forest island region, there is no truly pre-anthropogenic ‘pristine’ forest.
Resumo:
South American seasonally-dry tropical forests (SDTF) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12,000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8,000 and 7,000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined, but severe regional droughts persisted through the mid-Holocene, SDTF, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTF are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.
Resumo:
To study the impact of Amazonian forest fragmentation on the mosquito fauna, an inventory of Culicidae was conducted in the upland forest research areas of the Biological Dynamics of Forest Fragments Project located 60 km north of Manaus, Amazonas, Brazil. The culicid community was sampled monthly between February 2002 and May 2003. CDC light traps, flight interception traps, manual aspiration, and net sweeping were used to capture adult specimens along the edges and within forest fragments of different sizes (1, 10, and 100 ha), in second-growth areas surrounding the fragments and around camps. We collected 5,204 specimens, distributed in 18 genera and 160 species level taxa. A list of mosquito taxa is presented with 145 species found in the survey, including seven new records for Brazil, 16 new records for the state of Amazonas, along with the 15 morphotypes that probably represent undescribed species. No exotic species [Aedes aegypti (L.) and Aedes albopictus (Skuse)] were found within the sampled areas. Several species collected are potential vectors of Plasmodium causing human malaria and of various arboviruses. The epidemiological and ecological implications of mosquito species found are discussed, and the results are compared with other mosquito inventories from the Amazon region.
Resumo:
Two new mosquito species (Diptera: Culicidae), Culex (Melanoconion) phyllados n. sp. and Culex (Melanoconion) brachiatus n. sp. from the state of Amazonas, Brazil, are here validated and described based on morphological features of the male genitalia. Both species are morphologically more similar to both Culex coppenamensis Bonne-Wepster & Bonne and Culex alinkios Sallum & Hutchings than to any other species of the Bastagarius Subgroup of the subgenus Melanoconion. Diagnostic characters for the identification of the adult male of both species are provided.
Resumo:
The origin of tropical forest diversity has been hotly debated for decades. Although specific mechanisms vary, many such explanations propose some vicariance in the distribution of species during glacial cycles and several have been supported by genetic evidence in Neotropical taxa. However, no consensus exists with regard to the extent or time frame of the vicariance events. Here, we analyse the cytochrome oxidase II mitochondrial gene of 250 Sabethes albiprivus B mosquitoes sampled from western Sao Paulo in Brazil. There was very low population structuring among collection sites (Phi(ST) = 0.03, P = 0.04). Historic demographic analyses and the contemporary geographic distribution of genetic diversity suggest that the populations sampled are not at demographic equilibrium. Three distinct mitochondrial clades were observed in the samples, one of which differed significantly in its geographic distribution relative to the other two within a small sampling area (similar to 70 x 35 km). This fact, supported by the inability of maximum likelihood analyses to achieve adequate fits to simple models for the population demography of the species, suggests a more complex history, possibly involving disjunct forest refugia. This hypothesis is supported by a genetic signal of recent population growth, which is expected if population sizes of this forest-obligate insect increased during the forest expansions that followed glacial periods. Although a time frame cannot be reliably inferred for the vicariance event leading to the three genetic clades, molecular clock estimates place this at similar to 1 Myr before present.
Resumo:
Mosquito diversity was determined in an area located on the southern limit of the Atlantic Forest on the north coast of Rio Grande of Sul State. Our major objective was to verify the composition, diversity, and temporal distribution of the mosquito fauna, and the influence of temperature and rainfall. Samplings were performed monthly between December, 2006 and December, 2008, in three biotopes: forest, urban area, and transition area, using CDC light traps and a Nasci vacuum. A total of 2,376 specimens was collected, from which 1,766 (74.32%) were identified as 55 different species belonging to ten genera. Culex lygrus, Aedes serratus, and Aedes nubilus were dominant (eudominant) and constant throughout samplings. The forest environment presented the highest species dominance (D(S) = 0.20), while the transition area showed the highest values of diversity (H` = 2.55) and evenness (J` = 0.85). These two environments were the most similar, according to the Morisita-Horn Index (I(M-H) = 0.35). Bootstrap estimates showed that 87.3% of the species occurring in the region were detected. The seasonal pattern showed a greater abundance of mosquitoes between May and October, indicating the period to intensify entomological surveillance in that area. Journal of Vector Ecology 36 (1): 175-186. 2011.
Resumo:
This study analyzes evapotranspiration data for three wet and two seasonally dry rain forest sites in Amazonia. The main environmental (net radiation, vapor pressure deficit, and aerodynamic conductance) and vegetation (surface conductance) controls of evapotranspiration are also assessed. Our research supports earlier studies that demonstrate that evapotranspiration in the dry season is higher than that in the wet season and that surface net radiation is the main controller of evapotranspiration in wet equatorial sites. However, our analyses also indicate that there are different factors controlling the seasonality of evapotranspiration in wet equatorial rain forest sites and southern seasonally dry rain forests. While the seasonality of evapotranspiration in wet equatorial forests is driven solely by environmental factors, in seasonally dry forests, it is also biotically controlled with the surface conductance varying between seasons by a factor of approximately 2. The identification of these different drivers of evapotranspiration is a major step forward in our understanding of the water dynamics of tropical forests and has significant implications for the future development of vegetation-atmosphere models and land use and conservation planning in the region.
Resumo:
In this paper, the main microphysical characteristics of clouds developing in polluted and clean conditions in the biomass-burning season of the Amazon region are examined, with special attention to the spectral dispersion of the cloud droplet size distribution and its potential impact on climate modeling applications. The dispersion effect has been shown to alter the climate cooling predicted by the so-called Twomey effect. In biomass-burning polluted conditions, high concentrations of low dispersed cloud droplets are found. Clean conditions revealed an opposite situation. The liquid water content (0.43 +/- 0.19 g m(-3)) is shown to be uncorrelated with the cloud drop number concentration, while the effective radius is found to be very much correlated with the relative dispersion of the size distribution (R(2) = 0.81). The results suggest that an increase in cloud condensation nuclei concentration from biomass-burning aerosols may lead to an additional effect caused by a decrease in relative dispersion. Since the dry season in the Amazonian region is vapor limiting, the dispersion effect of cloud droplet size distributions could be substantially larger than in other polluted regions.
Resumo:
We combined measurements of tree growth and carbon dioxide exchange to investigate the effects of selective logging on the Aboveground Live Biomass (AGLB) of a tropical rain forest in the Amazon. Most of the measurements began at least 10 months before logging and continued at least 36 months after logging. The logging removed similar to 15% of the trees with Diameter at Breast Height (DBH) greater than 35 cm, which resulted in an instantaneous 10% reduction in AGLB. Both wood production and mortality increased following logging, while Gross Primary Production (GPP) was unchanged. The ratio of wood production to GPP (the wood Carbon Use Efficiency or wood CUE) more than doubled following logging. Small trees (10 cm < DBH < 35 cm) accounted for most of the enhanced wood production. Medium trees (35 cm < DBH < 55 cm) that were within 30 m of canopy gaps created by the logging also showed increased growth. The patterns of enhanced growth are most consistent with logging-induced increases in light availability. The AGLB continued to decline over the study, as mortality outpaced wood production. Wood CUE and mortality remained elevated throughout the 3 years of postlogging measurements. The future trajectory of AGLB and the forest`s carbon balance are uncertain, and will depend on how long it takes for heterotrophic respiration, mortality, and CUE to return to prelogging levels.
Resumo:
Tibouchina pulchra saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF) and ambient non-filtered air + 40 ppb ozone (NF + O-3) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12,895 ppb h(-1), respectively, for the three treatments. After 25 days of exposure (AOT40=3871 ppb h(-1)), interveinal red stippling appeared in plants in the NF + O-3 chamber. In the NF chamber, symptoms were observed only after 60 days of exposure (AOT40 = 910 ppb h(-1)). After 60 days, injured leaves per plant corresponded to 19% in NF + O-3 and 1% in the NF treatment; and the average leaf area injured was 7% within the NF + O-3 and 0.2% within the NF treatment. The extent of leaf area injured (leaf injury index) was mostly explained by the accumulated exposure of ozone (r(2) = 0.89; p < 0.05). (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Guatteria emarginata and G. stenocarpa, two new species from the Atlantic Forest in Espirito Santo and Bahia, Brazil, are presented here. Guatteria emarginata is characterized by narrowly obovate, verruculose leaves, densely covered with cinereous hairs on the lower side and an emarginate apex. Guatteria stenocarpa is remarkable among the Atlantic Forest species of the genus for its narrowly ellipsoid to cylindric monocarps of 22-25 mm long.
Resumo:
Rudgea jasminoides (Rubiaceae) is a tropical tree species native of the Atlantic Forest in the south of Brazil. Previous studies with leaf cell walls of R. jasminoides showed a different proportion of cross-linked glycans compared to what is usually reported for eudicots. However, due to the difficulties of working with whole plant organs, cell suspensions of R. jasminoides, consisting of predominantly undifferentiated cells with mainly primary cell walls, were used to examine cell walls and extracellular soluble polysaccharides (EP) released into the culture medium. Sugar composition and linkage analysis showed homogalacturonans, xylogalacturonans and arabinogalactans to be the predominant EP. In the cell wall, homogalacturonans and arabinogalactans are the major pectins, and xyloglucans and xylans are the major cross-linking glycans. The presence of xylogalacturonans in the R. jasminoides cell cultures seems to be related to the occurrence of a homogeneous cell suspension with loosely attached cells. Although all alkali extractions from the cell walls yielded amounts of xyloglucan that exceed those of the xylans, the latter was found in a proportion that is higher than what has been usually reported for primary cell walls of most eudicots. The xyloglucan from cell walls of cell suspension cultures of R. jasminoides has low fucosylation levels and high proportion of galactosyl residues, a branching pattern commonly found in storage cell-wall xyloglucans.