833 resultados para fault accommodation
Resumo:
PURPOSE: To evaluate the hypothesis that objective measures of open- and closed-loop ocular accommodation are related to systemic cardiovascular function, and ipso facto autonomic nervous system activity. METHODS: Sixty subjects (29 male; 31 female) varying in age from 18 to 33 years (average: 20.3 +/- 2.9 years) with a range of refractive errors [mean spherical equivalent (MSE): -7.12 to +1.82 D] participated in the study. Five 20-s continuous objective recordings of the accommodative response, measured with an open-view IR autorefractor (Shin-Nippon SRW-5000), were obtained for a variety of open- and closed-loop accommodative demands while simultaneous continuous measurement of heart rate was recorded with a finger-mounted piezo-electric pulse transducer for 5 min. Fast Fourier Transformation of cardiovascular function allowed the absolute and relative power of the autonomic components to be assessed in the frequency-domain, whereas heart period gave an indication of the time-domain response. RESULTS: Increasing closed-loop accommodative demand led to a concurrent increase in heart rate of approximately 2 beats/min for a 4.0 D increase in accommodative demand. The increase was attributable to a reduction in the absolute (p < 0.05) and normalised (p < 0.001) input of the systemic parasympathetic nervous system, and was unaffected by refractive group. The interaction with refractive group failed to reach significance. CONCLUSIONS: For sustained accommodation effort, the data demonstrate covariation between the oculomotor and cardiovascular systems which implies that a near visual task can significantly influence cardiovascular behaviour. Accommodative effort alone, however, is not a sufficient stimulus to induce autonomic differences between refractive groups. The data suggest that both the oculomotor and cardiovascular systems are predominantly attributable to changes in the systemic parasympathetic nervous system.
Resumo:
AIM: The aim of the study was to determine, objectively and non-invasively, whether changes in accommodative demand modify differentially the peripheral refraction in emmetropic and myopic human eyes. METHODS: Forty subjects (19 male, 21 female) aged 20-30 years (mean 22.7 (SD 2.8) years), 21 emmetropes (mean spherical equivalent refractive error (MSE) -0.13 (SD 0.29) D) and 19 myopes (MSE -2.95 (SD 1.76) D) participated in the study. Ametropia was corrected with soft contact lenses (etafilcon A, 58% water content). Subjects viewed monocularly a stationary, high contrast (85%) Maltese cross at 0.0, 1.0, 2.0 and 3.0 D of accommodative demand and at 0, 10, 20 and 30 degrees field angle (nasal and temporal) through a +3.0 D Badal optical system. Static recordings of the accommodation response were obtained for each accommodative level, at each field angle, with an objective, open-view, infrared optometer. RESULTS: Peripheral mean spherical equivalent (M) data showed that the emmetropic cohort exhibited relative myopic shifts into the periphery, while the myopic group showed hypermetropic shifts. Increasing accommodative demand did not alter the peripheral refractive profile in either the temporal (p = 0.25) or nasal (p = 0.07) periphery with no differential accommodative effect between refractive groups in either the temporal (p = 0.77) or nasal (p = 0.73) field. Significant shifts in the J(0) astigmatic component were seen in the temporal (p<0.0005) and nasal (p<0.0005) fields with increasing eccentricity. Interaction effects between eccentricity and accommodative demand illustrated that increasing accommodative demand significantly altered the peripheral refractive profile in the temporal J(0) astigmatic component (p<0.0005). The nasal periphery, however, failed to show such an effect (p = 0.65). CONCLUSIONS: Alterations in peripheral refraction augmented by changes in ocular accommodation are relatively unaffected by refractive error for young, healthy human eyes.
Resumo:
To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model.
Resumo:
Operators can become confused while diagnosing faults in process plant while in operation. This may prevent remedial actions being taken before hazardous consequences can occur. The work in this thesis proposes a method to aid plant operators in systematically finding the causes of any fault in the process plant. A computer aided fault diagnosis package has been developed for use on the widely available IBM PC compatible microcomputer. The program displays a coloured diagram of a fault tree on the VDU of the microcomputer, so that the operator can see the link between the fault and its causes. The consequences of the fault and the causes of the fault are also shown to provide a warning of what may happen if the fault is not remedied. The cause and effect data needed by the package are obtained from a hazard and operability (HAZOP) study on the process plant. The result of the HAZOP study is recorded as cause and symptom equations which are translated into a data structure and stored in the computer as a file for the package to access. Probability values are assigned to the events that constitute the basic causes of any deviation. From these probability values, the a priori probabilities of occurrence of other events are evaluated. A top-down recursive algorithm, called TDRA, for evaluating the probability of every event in a fault tree has been developed. From the a priori probabilities, the conditional probabilities of the causes of the fault are then evaluated using Bayes' conditional probability theorem. The posteriori probability values could then be used by the operators to check in an orderly manner the cause of the fault. The package has been tested using the results of a HAZOP study on a pilot distillation plant. The results from the test show how easy it is to trace the chain of events that leads to the primary cause of a fault. This method could be applied in a real process environment.
Resumo:
Hazard and operability (HAZOP) studies on chemical process plants are very time consuming, and often tedious, tasks. The requirement for HAZOP studies is that a team of experts systematically analyse every conceivable process deviation, identifying possible causes and any hazards that may result. The systematic nature of the task, and the fact that some team members may be unoccupied for much of the time, can lead to tedium, which in turn may lead to serious errors or omissions. An aid to HAZOP are fault trees, which present the system failure logic graphically such that the study team can readily assimilate their findings. Fault trees are also useful to the identification of design weaknesses, and may additionally be used to estimate the likelihood of hazardous events occurring. The one drawback of fault trees is that they are difficult to generate by hand. This is because of the sheer size and complexity of modern process plants. The work in this thesis proposed a computer-based method to aid the development of fault trees for chemical process plants. The aim is to produce concise, structured fault trees that are easy for analysts to understand. Standard plant input-output equation models for major process units are modified such that they include ancillary units and pipework. This results in a reduction in the nodes required to represent a plant. Control loops and protective systems are modelled as operators which act on process variables. This modelling maintains the functionality of loops, making fault tree generation easier and improving the structure of the fault trees produced. A method, called event ordering, is proposed which allows the magnitude of deviations of controlled or measured variables to be defined in terms of the control loops and protective systems with which they are associated.
Resumo:
The initial aim of this research was to investigate the application of expert Systems, or Knowledge Base Systems technology to the automated synthesis of Hazard and Operability Studies. Due to the generic nature of Fault Analysis problems and the way in which Knowledge Base Systems work, this goal has evolved into a consideration of automated support for Fault Analysis in general, covering HAZOP, Fault Tree Analysis, FMEA and Fault Diagnosis in the Process Industries. This thesis described a proposed architecture for such an Expert System. The purpose of the System is to produce a descriptive model of faults and fault propagation from a description of the physical structure of the plant. From these descriptive models, the desired Fault Analysis may be produced. The way in which this is done reflects the complexity of the problem which, in principle, encompasses the whole of the discipline of Process Engineering. An attempt is made to incorporate the perceived method that an expert uses to solve the problem; keywords, heuristics and guidelines from techniques such as HAZOP and Fault Tree Synthesis are used. In a truly Expert System, the performance of the system is strongly dependent on the high quality of the knowledge that is incorporated. This expert knowledge takes the form of heuristics or rules of thumb which are used in problem solving. This research has shown that, for the application of fault analysis heuristics, it is necessary to have a representation of the details of fault propagation within a process. This helps to ensure the robustness of the system - a gradual rather than abrupt degradation at the boundaries of the domain knowledge.
Resumo:
Despite numerous investigations, the aetiology and mechanism of accommodation and presbyopia remains equivocal. Using Gaussian first-order ray tracing calculations, we examine the contribution that ocular axial distances make to the accommodation response. Further, the influence of age and ametropia are also considered. The data show that all changes in axial distances during accommodation reduce the accommodation response, with the reduction in anterior chamber depth contributing most to this overall attenuation. Although the total power loss due to the changes in axial distances remained constant with increasing age, hyperopes exhibited less accommodation than myopes. The study, therefore, enhances our understanding of biometric accommodative changes and demonstrates the utility of vergence analysis in the assessment of accommodation.
Resumo:
It has long been sought to measure ocular accommodation continuously in human factor applications such as driving or flying. Open-field autorefractors such as the Canon R-1 could be converted to allow continuous, objective recording, but steady eye fixation and head immobilisation were essential for the measurements to be valid. Image analysis techniques utilised by newer open-view autorefractors such as the Shin-Nippon SRW-5000 are more tolerant to head and eye movements, but perhaps the technique with the greatest potential for the measurement of accommodation in human factor applications is photoretinoscopy. This paper examines the development of techniques for high temporal measurements of accommodation and reports on the tolerance of one such recent commercial instrument, the PowerRefractor (PlusOptiX). The instrument was found to be tolerant to eye movements from the optical axis of the instrument (∼0.50 DS change in apparent accommodation with gaze 25° eccentric to the optical axis), longitudinal head movement (<0.25 DS from 8 cm towards and 20 cm away from the correct photorefractor to eye distance) and changes in background illuminance (<0.25 DS from 0.5 to 20 cd m-2 target luminance). The PowerRefractor also quantifies the direction of gaze and pupil size, but is unable to take measurements with small pupils <3.7 ±1.0 mm. © 2002 The College of Optometrists.
Resumo:
Requirements for systems to continue to operate satisfactorily in the presence of faults has led to the development of techniques for the construction of fault tolerant software. This thesis addresses the problem of error detection and recovery in distributed systems which consist of a set of communicating sequential processes. A method is presented for the `a priori' design of conversations for this class of distributed system. Petri nets are used to represent the state and to solve state reachability problems for concurrent systems. The dynamic behaviour of the system can be characterised by a state-change table derived from the state reachability tree. Systematic conversation generation is possible by defining a closed boundary on any branch of the state-change table. By relating the state-change table to process attributes it ensures all necessary processes are included in the conversation. The method also ensures properly nested conversations. An implementation of the conversation scheme using the concurrent language occam is proposed. The structure of the conversation is defined using the special features of occam. The proposed implementation gives a structure which is independent of the application and is independent of the number of processes involved. Finally, the integrity of inter-process communications is investigated. The basic communication primitives used in message passing systems are seen to have deficiencies when applied to systems with safety implications. Using a Petri net model a boundary for a time-out mechanism is proposed which will increase the integrity of a system which involves inter-process communications.
Resumo:
The principal theme of this thesis is the in vivo examination of ocular morphological changes during phakic accommodation, with particular attention paid to the ciliary muscle and crystalline lens. The investigations detailed involved the application of high-resolution imaging techniques to facilitate the acquisition of new data to assist in the clarification of aspects of the accommodative system that were poorly understood. A clinical evaluation of the newly available Grand Seiko Auto Ref/ Keratometer WAM-5500 optometer was undertaken to assess its value in the field of accommodation research. The device was found to be accurate and repeatable compared to subjective refraction, and has the added advantage of allowing dynamic data collection at a frequency of around 5 Hz. All of the subsequent investigations applied the WAM-5500 for determination of refractive error and objective accommodative responses. Anterior segment optical coherence tomography (AS-OCT) based studies examined the morphology and contractile response of youthful and ageing ciliary muscle. Nasal versus temporal asymmetry was identified, with the temporal aspect being both thicker and demonstrating a greater contractile response. The ciliary muscle was longer in terms of both its anterior (r = 0.49, P <0.001) and overall length (r = 0.45, P = 0.02) characteristics, in myopes. The myopic ciliary muscle does not appear to be merely stretched during axial elongation, as no significant relationship between thickness and refractive error was identified. The main contractile responses observed were a thickening of the anterior region and a shortening of the muscle, particularly anteriorly. Similar patterns of response were observed in subjects aged up to 70 years, supporting a lensocentric theory of presbyopia development. Following the discovery of nasal/ temporal asymmetry in ciliary muscle morphology and response, an investigation was conducted to explore whether the regional variations in muscle contractility impacted on lens stability during accommodation. A bespoke programme was developed to analyse AS-OCT images and determine whether lens tilt and decentration varied between the relaxed and accommodated states. No significant accommodative difference in these parameters was identified, implying that any changes in lens stability with accommodation are very slight, as a possible consequence of vitreous support. Novel three-dimensional magnetic resonance imaging (MRI) and analysis techniques were used to investigate changes in lens morphology and ocular conformation during accommodation. An accommodative reduction in lens equatorial diameter provides further evidence to support the Helmholtzian mechanism of accommodation, whilst the observed increase in lens volume challenges the widespread assertion that this structure is incompressible due to its high water content. Wholeeye MRI indicated that the volume of the vitreous chamber remains constant during accommodation. No significant changes in ocular conformation were detected using MRI. The investigations detailed provide further insight into the mechanisms of accommodation and presbyopia, and represent a platform for future work in this field.
Resumo:
Under conditions of reduced visual stimulation, the systems of accommodation and vergence tend towards physiological resting states that are intermediate within their functional range. The terms tonic accommodation (TA) and tonic vergence (TV) are used in the study to describe these stimulus-free, intermediate adjustments and to represent the systems as being in a state of innervational tonicity. The literature relating to TA and TV and the various experiments of this thesis are reviewed. Methodology has been developed enabling the determination of TA and TV under conditions of total darknessl laser optometry for TA and ~ernier-alignment for TV. The thesis describes a series of experiments designed to investigate various aspects of TA and TV, and their role in ametropia, binocular vision and their adaptation to sustained visual tasks. Measurements of TA were also utilised to investigate the effect of various autonomic effector drugs on the ciliary muscle. The effects of ethanol on binocular function are shown to be directly proportional to the .initial level of TVJ which is itself unaffected. These results support the concept of TV as the reference point for normal vergence responses. The results of the pharmacological investigations indicate the presence of a small but significant, beta-receptor mediated inhibitory sympathetic input to the ciliary muscle, and that the wide distribution in TA is a consequence of inter-observer variations in parasympathetic, rather than sympathetic tone. Following interaction with visual tasks of t5mins duration, the levels of TA and TV are found to be biased in the direction of, and proportional to, the task position: except during near-task viewing where the task-to-TA stimulus-distance exceeds 1.5D (for TA) and 3.5deg (for TV). Under these conditions the expected level of bias is attenuated, Adaptive models are discussed, proposing TA and TV as the reference points of the accommodative and vergence system.
Resumo:
It is well established that a synkinetic relationship exists between the accommodation and vergence components of the oculomotor near response such that increased accommodation will initiate a vergence response (i.e. accommodative convergence) and conversely increased vergence will drive accommodation (i.e. convergent accommodation) . The synkinesis associated with sustained near-vision was examined in a student population consisting of emmetropes, late-onset myopes (LOMs) i.e. myopia onset at 15 years of age or later and early-onset myopes (EOMs) i.e. myopia onset prior to 15 years of age. Oculomotor synkinesis was investigated both under closed-loop conditions and with either accommodation or vergence open-loop. Objective measures of the accommodative response were made using an infra-red optometer. Differences in near-response characteristics were observed between LOMs and EOMs under both open- and closed-loop conditions. LOMs exhibit significantly higher levels of disparity-induced accommodation (accommodation driven by vergence under closed-loop conditions) and lower response accommodative convergence/accommodation (AC/A) ratios when compared with EOMs. However no difference in convergent accommodation/convergence (CA/C) ratios were found between the three refractive groups. Accommodative adaptation was examined by comparing the pre- to post-task shift in dark focus (DF) following near-vision tasks. Accommodative adaptation was observed following tasks as brief as 15s. Following a 45s near-vision task, subjects having pre-task DF greater than +0.750 exhibited a marked negative shift in post-task DF which was shown to be induced by beta-adrenergic innervation to the ciliary muscle. However no evidence was found to support the proposal of reduced adrenergic innervation to the ciliary muscle in LOMs. Disparity-vergence produced a reduction in accommodative adaptation suggesting that oculomotor adaptation was not driven by the output of the near-response crosslinks. In order to verify this proposition, the effect of vergence adaptation on CA/C was investigated and it was observed that prism adaptation produced no significant change in the CA/C ratio. This would indicate that in a model of accommodation-vergence interaction, the near response cross-links occur after the input to the adaptive components of the oculomotor response rather than before the adaptive elements as reported in previous literature. The findings of this thesis indicate differences in the relative composition of the aggregate accommodation and vergence responses in the three refractive groups examined. They may also have implications with regard to the aetiology of late-onset myopia.
Resumo:
A Hamamatsu Video Area Analyser has been coupled with a modified Canon IR automatic optometer. This has allowed simultaneous recording of pupil diameter and accommodation response to be made both statically and continuously, a feature not common in previous studies. Experimental work concerned pupil and accommodation responses during near vision tasks under a variety of conditions. The effects of sustained near vision tasks on accommodation have usually been demonstrated by taking post-task measures under darkroom conditions. The possibility of similar effects on pupil diameter was assessed using static and continuous recordings following a near vision task. Results showed that is luminance levels remained unchanged by using a pre-and post-task bright-empty field then, although accommodation regressed to pre-task levels,pupil diameter remained for several minutes at the contstricted level induced by the task. An investigation into the effect of a sinusoidally-modulated blur-only accommodative stimulus on pupil response demonstrated that response may be reduced or absent despite robust accommodation responses. This suggests that blur-driven acommodation alone may not be sufficient to produce a pupil near response and that the presence of other cues may be necessary. Pupil response was investigated using a looming stimulus which produced an inferred-proximity cue. It was found that a pupil response could be induced which was in synchrony with the stimulus while closed-loop accommodation response was kept constant by the constraints of optical blur. The pupil diameter of young and elderly subjects undertaking a 5 minute reading task was measured to assess the contribution of pupil constriction to near vision function in terms of depth-of-focus. Results showed that in the young subjects pupil diameter was too large to have a significant effect on depth-of-focus although it may be increased in the elderly subjects. Pupil and accommodation reponses to a temporally-modulated stimulus containing all cues present in a normal visual environment was assessed and results showed that as stimulus temporal frequency increased, pupil response showed increasing phase lag relative to closed-loop accommodation. The results of this study suggest that it may be necessary to change the accepted view of the function of pupil response as part of the near vision triad and that further study would be of benefit in particular to designers of vision aids such as, for example, bifocal contact lenses.
Resumo:
The relationship between accommodation and intraocular pressure (lOP) has not been addressed as a research question for over 20 years, when measurement of both of these parameters was less advanced than today. Hence the central aim of this thesis was to evaluate the effects of accommodation on lOP. The instrument of choice throughout this thesis was the Pulsair EasyEye non-contact tonometer (NCT) due principally to its slim-line design which allowed the measurement of lOP in one eye and simultaneous stimulation of accommodation in the other eye. A second reason for using the Pulsair EasyEye NCT was that through collaboration with the manufacturers (Keeler, UK) the instrument's operational technology was made accessible. Hence, the principle components underpinning non-contact lOP measures of 0.1mmHg resolution (an order of magnitude greater than other methods) were made available. The relationship between the pressure-output and corneal response has been termed the pressure-response relationship, aspects of which have been shown to be related to ocular biometric parameters. Further, analysis of the components of the pressure-response relationship together with high-speed photography of the cornea during tonometry has enhanced our understanding of the derivation of an lOP measure with the Pulsair EasyEye NCT. The NCT samples the corneal response to the pressure pulse over a 19 ms cycle photoelectronically, but computes the subject's lOP using the data collected in the first 2.34 ms. The relatively instantaneous nature of the lOP measurement renders the measures susceptible to variations in the steady-state lOP caused by the respiratory and cardiac cycles. As such, the variance associated with these cycles was minimised by synchronising the lOP measures with the cardiac trace and maintaining a constant pace respiratory cycle at 15 breathes/minute. It is apparent that synchronising the lOP measures with the peak, middle or trough of the cardiac trace significantly reduced the spread of consecutive measures. Of the 3 locations investigated, synchronisation with the middle location demonstrated the least variance (coeflicient of variation = 9.1%) and a strong correlation (r = 0.90, p = <0.001) with lOP values obtained with Goldmann contact tonometry (n = 50). Accordingly lOP measures synchronised with the middle location of the cardiac cycle were taken in the RE while the LE fixated low (L; zero D), intermediate (I; 1.50 D) and high (H; 4 D) accommodation targets, Quasi-continuous measures of accommodation responses were obtained during the lOP measurement period using the portable infrared Grand Seiko FR-5000 autorefractor. The lOP reduced between L and I accommodative levels by approximately 0.61 mmHg (p <0.00 I). No significant reduction in IOP between L and H accommodation levels was elicited (p = 0.65) (n = 40). The relationship between accommodation and lOP was characterised by substantial inter-subject variations. Myopes demonstrated a tendency to show a reduction in IOP with accommodation which was significant only with I accommodation levels when measured with the NCT (r = 0.50, p = 0.01). However, the relationship between myopia and lOP change with accommodation reached significance for both I (r = 0.61, p= 0.003) and H (r = 0.531, p= 0.0 1) accommodation levels when measured with the Ocular blood Flow Analyser (OBFA). Investigation of the effects of accommodation on the parameters measured by the OBFA demonstrated that with H accommodation levels the pulse amplitude (PA) and pulse rate (PR) responses differed between myopes and emmetropes (PA: p = 0.03; PR: p = 0.004). As thc axial length increased there was a tendency for the pulsatile ocular blood flow (POBF) to reduce with accommodation, which was significant only with H accommodation levels (r = 0.38, p = 0.02). It is proposed that emmetropes arc able to regulate the POBF responses to changes in ocular perfusion pressure caused by changes in lOP with I (r = 0.77, p <0.001) and H (r = 0.73, p = 0.001) accommodation levels. However, thc relationship between lOP and POBF changes in the myopes was not correlated for both I (r = 0.33, p = 0.20) and H (r = 0.05, p = 0.85) accommodation levels. The thesis presents new data on the relationships between accommodation, lOP and parameters of the OBFA,: and provides evidence for possible lOP and choroidal blood flow regulatory mechanisms. Further the data highlight possible deficits in the vascular regulation of the myopic eye during accommodation, which may play a putative role in the aetiology of myopia development.