993 resultados para farm-gate milk
Resumo:
Endocrine disruptors (EDs) are compounds known to interfere with the endocrine system by disturbing the action or pathways of natural hormones which may lead to infertility or cancer.Our diet is considered to be one of the main exposure routes to EDs. Since milk and dairy products are major components of our diet they should be monitored for ED contamination. Most assays developed to date utilise targeted, chromatography based methods which lack information on the biological activity and mixture effects of the monitored compounds.A biological reporter gene assay (RGA) was developed to assess the total estrogen hormonal load in milk. It has been validated according to EU decision 2002/657/EC. Analytes were extracted by liquid-liquid extraction with acetonitrile followed by clean up on a HLB column which yielded good recovery and small matrix effects. The method has been shown to be estrogen specific, repeatable and reproducible, with covariance values below 20%. In conclusion, this method enables the detection of low levels of estrogen hormonal activity in milk with a detection capability of 36pgg EEQ and has been successfully applied in testing a range of milk samples. © 2014 Elsevier Ltd.
Resumo:
An endocrine disruptor (ED) is an exogenous compound that interferes with the body's endocrine system. Exposure to EDs may result in adverse health effects such as infertility and cancer. EDs are composed of a vast group of chemicals including compounds of natural origin such as phytoestrogens or mycotoxins and a wide range of man-made chemicals such as pesticides. Synthetic compounds may find their way into the food chain where a number of them can biomagnify. Additionally, processing activities and food contact materials may add further to the already existing pool of food contaminants. Thus, our diet is considered to be one of the main exposure routes to EDs. Some precautionary legislation has already been introduced to control production and/or application of some persistent organic pollutants with ED characteristics. However, newly emerging EDs with bioaccumulative properties have recently been reported to appear at lower tiers of the food chain but have not been monitored at the grander scale. Milk and dairy products are a major component of our diet, thus it is important to monitor them for EDs. However, most methods developed to date are devoted to one group of compounds at a time. The UHPLC-MS/MS method described here has been validated according to EC decision 2002/657/EC and allows simultaneous extraction, detection, quantitation and confirmation of 19 EDs in milk. The method calibration range is between 0.50 and 20.0 μg kg with coefficients of determination above 0.99 for all analytes. Precision varied from 4.7% to 23.4% in repeatability and reproducibility studies. Established CCα and CCβ values (0.11-0.67 μg kg) facilitate fast, reliable, quantitative and confirmatory analysis of sub μg kg levels of a range of EDs in milk.
Resumo:
Antimicrobial residues found to be present in milk can have both health and economic impacts. For these reasons, the widespread routine testing of milk is required. Due to delays with sample handling and test scheduling, laboratory-based tests are not always suited for making decisions about raw material intake and product release, especially when samples require shipping to a central testing facility. Therefore, rapid on-site screening tests that can produce results within a matter of minutes are required to facilitate rapid intake and product release processes. Such tests must be simple for use by non-technical staff. There is increasing momentum towards the development and implementation of multiplexing tests that can detect a range of important antimicrobial residues simultaneously. A simple in situ multiplexed planar waveguide device that can simultaneously detect chloramphenicol, streptomycin and desfuroylceftiofur in raw dairy milk, without sample preparation, has been developed. Samples are simply mixed with antibody prior to an aliquot being passed through the detection cartridge for 5 min before reading on a field-deployable portable instrument. Multiplexed calibration curves were produced in both buffer and raw milk. Buffer curves, for chloramphenicol, streptomycin and desfuroylceftiofur, showed linear ranges (inhibitory concentration (IC)20–IC80) of 0.1–0.9, 3–129 and 12–26 ng/ml, whilst linear range in milk was 0.13–0.74, 11–376 and 2–12 ng/ml, respectively, thus meeting European legislated concentration requirements for both chloramphenicol and streptomycin, in milk, without the need for any sample preparation. Desfuroylceftiofur-contaminated samples require only simple sample dilution to bring positive samples within the range of quantification. Assay repeatability and reproducibility were lower than 12 coefficient of variation (%CV), whilst blank raw milk samples (n = 9) showed repeatability ranging between 4.2 and 8.1 %CV when measured on all three calibration curves.
Resumo:
This paper investigates a flexible fault ride through strategy for power systems in China with high wind power penetration. The strategy comprises of adaptive fault ride through requirements and maximum power restrictions of the wind farms with weak fault ride through capabilities. The slight faults and moderate faults with high probability are the main defending objective of the strategy. The adaptive fault ride through requirement in the strategy consists of two sub fault ride through requirements, a temporary slight voltage ride through requirement corresponding to a slight fault incident, with a moderate voltage ride through requirement corresponding to a moderate fault. The temporary overloading capability of the wind farm is reflected in both requirements to enhance the capability to defend slight faults and to avoid tripping when the crowbar is disconnected after moderate faults are cleared. For those wind farms that cannot meet the adaptive fault ride through requirement, restrictions are put on the maximum power output. Simulation results show that the flexible fault ride through strategy increases the fault ride through capability of the wind farm clusters and reduces the wind power curtailment during faults.
Resumo:
This article is concerned with how men and women on farms socially construct their gender and work identities through interaction with each other and public representations of themselves. It is argued that identity is a process, and like gender, it is socially constructed through ‘doing’ identity.
Farming has changed tremendously over the last forty years in Europe. The position of women in the labour market and on the family farm has also undergone significant changes. In Western Europe, women in general and women on family farms are more likely to be active in the labour market than they were forty years ago. While it remains the case that all of their labour on the farm is not properly recorded, they now also have visible, paid employment. Scholars have been surprised that farm women’s gender identity has not changed more significantly with this changed labour market presence. This article argues that in order to understand this limited change we need to understand how men and women in family farms verify and reinforce farming work identities and farming gender identities. It is argued that while off-farm work does not ‘look’ like gender deviant work, it is because it questions the male breadwinner role. An analysis of this helps us understand why the discourse of the family farm remains so dominant and so persistent. In 2012 and 2013, a qualitative study was undertaken in Northern Ireland to examine the gender implications of the EU rural development programme on farms and rural areas. Some of the data gathered as part of this study is interpreted to shed light on how and why particular work and gender identities are constructed within the farm family.
Resumo:
Goats’ milk is responsible for unique traditional products such as Halloumi cheese. The characteristics of Halloumi depend on the original features of the milk and on the conditions under which the milk has been produced such as feeding regime of the animals or region of production. Using a range of milk (33) and Halloumi (33) samples collected over a year from three different locations in Cyprus (A, Anogyra; K, Kofinou; P, Paphos), the potential for fingerprint VOC analysis as marker to authenticate Halloumi was investigated. This unique set up consists of an in-injector thermo desorption (VOCtrap needle) and a chromatofocusing system based on mass spectrometry (VOCscanner). The mass spectra of all the analyzed samples are treated by multivariate analysis (Principle component analysis and Discriminant functions analysis). Results showed that the highland area of product (P) is clearly identified in milks produced (discriminant score 67%). It is interesting to note that the higher similitude found on milks from regions “A” and “K” (with P being distractive; discriminant score 80%) are not ‘carried over’ on the cheeses (higher similitude between regions “A” and “P”, with “K” distinctive). Data have been broken down into three seasons. Similarly, the seasonality differences observed in different milks are not necessarily reported on the produced cheeses. This is expected due to the different VOC signatures developed in cheeses as part of the numerous biochemical changes during its elaboration compared to milk. VOC however it is an additional analytical tool that can aid in the identification of region origin in dairy products.
Resumo:
There is interest in determining levels of Mycobacterium avium subsp. paratuberculosis (MAP) contamination in milk. The optimal sample preparation for raw cows' milk to ensure accurate enumeration of viable MAP by the peptide-mediated magnetic separation (PMS)-phage assay was determined. Results indicated that milk samples should be refrigerated at 4 C after collection and MAP testing should commence within 24 h, or samples can be frozen at 70 C for up to one month without loss of MAP viability. Use of Bronopol is not advised as MAP viability is affected. The vast majority (>95%) of MAP in raw milk sedimented to the pellet upon centrifugation at 2500 g for 15 min, so this milk fraction should be tested. De-clumping of MAP cells was most effectively achieved by ultrasonication of the resuspended milk pellet on ice in a sonicator bath at 37 kHz for 4 min in ‘Pulse’ mode.