947 resultados para extraction and purification
Resumo:
By virtue of its proximity and richness, the Virgo galaxy cluster is a perfect testing ground to expand our understanding of structure formation in the Universe. Here, we present a comprehensive dynamical catalogue based on 190 Virgo cluster galaxies (VCGs) in the "Spectroscopy and H-band Imaging of the Virgo cluster" (SHIVir) survey, including kinematics and dynamical masses. Spectroscopy collected over a multi-year campaign on 4-8m telescopes was joined with optical and near-infrared imaging to create a cosmologically-representative overview of parameter distributions and scaling relations describing galaxy evolution in a rich cluster environment. The use of long-slit spectroscopy has allowed the extraction and systematic analysis of resolved kinematic profiles: Halpha rotation curves for late-type galaxies (LTGs), and velocity dispersion profiles for early-type galaxies (ETGs). The latter are shown to span a wide range of profile shapes which correlate with structural, morphological, and photometric parameters. A study of the distributions of surface brightnesses and circular velocities for ETGs and LTGs considered separately show them all to be strongly bimodal, hinting at the existence of dynamically unstable modes where the baryon and dark matter fractions may be comparable within the inner regions of galaxies. Both our Tully-Fisher relation for LTGs and Fundamental Plane analysis for ETGs exhibit the smallest scatter when a velocity metric probing the galaxy at larger radii (where the baryonic fraction becomes sub-dominant) is used: rotational velocity measured in the outer disc at the 23.5 i-mag arcsec^{-2} level, and velocity dispersion measured within an aperture of 2 effective radii, respectively. Dynamical estimates for gas-poor and gas-rich VCGs are merged into a joint analysis of the stellar-to-total mass relation (STMR), stellar TFR, and Mass-Size relation. These relations are all found to contain strong bimodalities or dichotomies between the ETG and LTG samples, alluding to a "mixed scenario'' evolutionary sequence between morphological/dynamical classes that involves both quenching and dry mergers. The unmistakable differentiation between these two galaxy classes appears robust against different classification schemes, and supports the notion that they are driven by different evolutionary histories. Future observations using integral field spectroscopy and including lower-mass galaxies should solidify this hypothesis.
Resumo:
We present the extraction and processing of the IUE Low Dispersion spectra within the framework of the ESA “IUE Newly Extracted Spectra” (INES) System. Weak points of SWET, the optimal extraction implementation to produce the NEWSIPS output products (extracted spectra) are discussed, and the procedures implemented in INES to solve these problems are outlined. The more relevant modifications are: 1) the use of a new noise model, 2) a more accurate representation of the spatial profile of the spectrum and 3) a more reliable determination of the background. The INES extraction also includes a correction for the contamination by solar light in long wavelength spectra. Examples showing the improvements obtained in INES with respect to SWET are described. Finally, the linearity and repeatability characteristics of INES data are evaluated and the validity of the errors provided in the extraction is discussed.
Resumo:
Adeno-associated viral (AAV) vectors are among the most widely used gene transfer systems in basic and pre-clinical research and have been employed in more than 160 clinical trials. AAV vectors are commonly produced in producer cell lines like HEK293 by co-transfection with a so-called vector plasmid and one (in this work) or two so-called helper plasmids. The vector plasmid contains the transgene cassette of interest (TEC) flanked by AAV’s inverted terminal repeats (ITRs) which serve as packaging signals, whereas the helper plasmid provides the required AAV and helper virus functions in trans. A pivotal aspect of AAV vectorology is the manufacturing of AAV vectors free from impurities arising during the production process. These impurities include AAV vector preparations that contain capsids containing prokaryotic sequences, e.g. antibiotic resistance genes originating from the producer plasmids. In the first part of the thesis we aimed at improving the safety of AAV vectors. As we found that encapsidated prokaryotic sequences (using the ampicillin resistance gene as indicator) cannot be re-moved by standard purification methods we investigated whether the producer plasmids could be replaced by Minicircles (MCs). MCs are circular DNA constructs which contain no functional or coding prokaryotic sequences; they only consist of the TEC and a short sequence required for production and purification. MC counterparts of a vector plasmid encoding for enhanced green fluorescent (eGFP) protein and a helper plasmid encoding for AAV serotype 2 (AAV2) and helper Adenovirus (Ad) genes were designed and produced by PlasmidFactory (Bielefeld, Germany). Using all four possible combinations of plasmid and MCs, single-stranded AAV2 vectors (ssAAV) and self-complementary AAV vectors (scAAV) were produced and characterized for vector quantity, quality and functionality. The analyses showed that plasmids can be replaced by MCs without decreasing the efficiency of vector production and vector quality. MC-derived scAAV vector preparations even exceeded plasmid-derived preparations, as they displayed up to 30-fold improved transduction efficiencies. Using MCs as tools, we found that the vector plasmid is the main source of encapsidated prokaryotic sequences. Remarkably, we found that plasmid-derived scAAV vector preparations contained a much higher relative amount of prokaryotic sequences (up to 26.1 %, relative to TEC) compared to ssAAV vector preparations (up to 2.9 %). By replacing both plasmids by MCs the amount of functional prokaryotic sequences could be decreased to below the limit of quantification. Additional analyses for DNA impurities other than prokaryotic sequences showed that scAAV vectors generally contained a higher amount of non-vector DNA (e.g. adenoviral sequences) than ssAAV vectors. For both, ssAAV and scAAV vector preparations, MC-derived vectors tended to contain lower amounts of foreign DNA. None of the vectors tested could be shown to induce immunogenicity. In summary we could demonstrate that the quality of AAV vector preparations could be significantly improved by replacing producer plasmids by MCs. Upon transduction of a target tissue, AAV vector genomes predominantly remain in an episomal state, as duplex DNA circles or concatemers. These episomal forms mediate long-term transgene expression in terminally differentiated cells, but are lost in proliferating cells due to cell division. Therefore, in the second part of the thesis, in cooperation with Claudia Hagedorn and Hans J. Lipps (University Witten/Herdecke) an AAV vector genome was equipped with an autonomous replication element (Scaffold/matrix attachment region (S/MAR)). AAV-S/MAR encoding for eGFP and a blasticidin resistance gene and a control vector with the same TEC but lacking the S/MAR element (AAV-ΔS/MAR) were produced and transduced into highly proliferative HeLa cells. Antibiotic pressure was employed to select for cells stably maintaining the vector genome. AAV-S/MAR transduced cells yielded a higher number of colonies than AAV-ΔS/MAR-transduced cells. Colonies derived from each vector transduction were picked and cultured further. They remained eGFP-positive (up to 70 days, maximum cultivation period) even in the absence of antibiotic selection pressure. Interestingly, the mitotic stability of both AAV-S/MAR and control vector AAV-ΔS/MAR was found to be a result of episomal maintenance of the vector genome. This finding indicates that, under specific conditions such as the mild selection pressure we employed, “common” AAV vectors persist episomally. Thus, the S/MAR element increases the establishment frequency of stable episomes, but is not a prerequisite.
Resumo:
Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.
Resumo:
Microplastics have become ubiquitous pollutants in the marine environment. Ingestion of microplastics by a wide range of marine organisms has been recorded both in laboratory and field studies. Despite growing concern for microplastics, few studies have evaluated their concentrations and distribution in wild populations. Further, there is a need to identify cost-effective standardized methodologies for microplastics extraction and analysis in organisms. In this thesis I present: (i) the results of a multi-scale field sampling to quantify and characterize microplastics occurrence and distribution in 4 benthic marine invertebrates from saltmarshes along the North Adriatic Italian coastal lagoons; (ii) a comparison of the effects and cost-effectiveness of two extraction protocols for microplastics isolation on microfibers and on wild collected organisms; (iii) the development of a novel field- based technique to quantify and characterize the microplastic uptake rates of wild and farmed populations of mussels (Mytilus galloprovincialis) through the analysis of their biodeposits. I found very low and patchy amounts of microplastics in the gastrointestinal tracts of sampled organisms. The omnivorous crab Carcinus aestuarii was the species with the highest amounts of microplastics, but there was a notable variation among individuals. There were no substantial differences between enzymatic and alkaline extraction methods. However, the alkaline extraction was quicker and cheaper. Biodeposit traps proved to be an effective method to estimate mussel ingestion rates. However their performance differed significantly among sites, suggesting that the method, as currently designed, is sensible to local environmental conditions. There were no differences in the ingestion rates of microplastics between farmed and wild mussels. The estimates of microplastic ingestion and the validated procedures for their extraction provide a strong basis for future work on microplastic pollution.
Resumo:
This thesis project presents a work based on the study of a particular class of amino-boranes, called bis-phenothiazine-aryl-boranes. The peculiarity of these compounds is the N-B-N chemical moiety and their complex conformational behaviour, due to the combination of steric hindrance and conjugation of the B-N bond. Our work is focused on two main products with different symmetry: bis-phenothiazine-2-methylnaphthyl-borane (2b) and bis-phenothiazine-anthracenyl-borane (2c). We firstly focused our attention on an effective way of synthesis, by optimizing both reaction conditions and purification. The products and co-products of interest were then characterized with NMR, mass spectroscopy and X-Ray diffraction on single crystals. The products were eventually analysed through conformational studies, by experimental techniques, such as dynamic NMR and EXSY, and by a theorical approach with DFT calculations.
Resumo:
Phragmites australis (Cav.) Trin. ex Steud. is a hydrophyte particularly resistant to harsh conditions, e.g. drought, high salinity, contaminants, such as heavy metals and toxic molecules, and high nutrients concentrations. These resistances render the plant suitable for water depuration, where its particular metabolism is exploited to remove pollutants and excessive nutrients from the environment. In constructed wetlands, this principle is applied to phyto-purify wastewater with various origins, such as industrial, agricultural and household, with the aim to improve its quality to an extent which would render its reuse possible. In the framework of a pre-existing project of Department of Agricultural and Food Sciences (DiSTAl), this work integrates the knowledge and data relative to an Emilia Romagna (IT) constructed wetland plant, in order to expand the knowledge about this particular facility and of the system in general. By assaying antioxidants, both non- enzymatic and enzymatic, chlorophylls content and net photosynthetic rates, and by measuring the elemental composition of the specimens, the health status and the elemental uptake of the wetland plants sampled in different areas were investigated. The results were compared amongst the examined specimens with the aim to detect areas where there may be a higher stress due to a different wastewater composition, potentially varying along the constructed route. In addition, different parameters regarding the extraction and assay protocols were investigated, in order to optimise the procedure and to select the best conditions to perform the analyses, as well as to integrate information missing in literature or found as contradictory.
Resumo:
To address the request to develop rapid and easy methods for determining the cannabinoids, an HPLC-UV method (8 min) to separate and quantify the 10 main cannabinoids in hemp inflorescences was developed, and in-house validated. Moreover, the antioxidant activity of cannabidiol (CBD) in two oily matrices was investigated and compared to that of α-tocopherol, in relation to the growing market of oily solutions containing cannabidiol. Then, since no univocal legislation on the evaluation of quality and authenticity of hemp seed oil (HSO) exists, the composition and quality of cold-pressed HSOs were also explored, highlighting a great variability in terms of oxidative state minor compounds content. From the sensory point of view, a panel was trained, a specific sensory wheel and a profile sheet were developed. Due to the Covid-19 pandemic, the sensory evaluation was also performed at home. The panel showed a good performance both in the laboratory and remotely. Moreover, a focus group was used to investigate consumers’ attitudes, pointing out that a high-quality HSO has to be cold-pressed and green for them. Then, the evaluation of stability during the storage of HSOs was investigated. The results showed that photo-oxidation did not seem to significantly affect the quality of the oil during the first 3 months of storage. Finally, a study about the evolution of the volatile profile of 9 HSOs, under accelerated oxidation conditions, allowed identifying volatile markers of HSOs oxidation and freshness. This Ph.D. was developed in the context of the scholarship “Harmonized procedures of analysis of medical, herbal, food and industrial cannabis: development and validation of cannabinoids’ quality control methods, of extraction and preparation of derivatives from the plant raw material, according to the product destination” funded by Enecta S.r.l.
Resumo:
Thanks to the development and combination of molecular markers for the genetic traceability of sunflower varieties and a gas chromatographic method for the determination of the FAs composition of sunflower oil, it was possible to implement an experimental method for the verification of both the traceability and the variety of organic sunflower marketed by Agricola Grains S.p.A. The experimental activity focused on two objectives: the implementation of molecular markers for the routine control of raw material deliveries for oil extraction and the improvement and validation of a gas chromatographic method for the determination of the FAs composition of sunflower oil. With regard to variety verification and traceability, the marker systems evaluated were the following: SSR markers (12) arranged in two multiplex sets and SCAR markers for the verification of cytoplasmic male sterility (Pet1) and fertility. In addition, two objectives were pursued in order to enable a routine application in the industrial field: the development of a suitable protocol for DNA extraction from single seeds and the implementation of a semi-automatic capillary electrophoresis system for the analysis of marker fragments. The development and validation of a new GC/FID analytical method for the determination of fatty acids (FAME) in sunflower achenes to improve the quality and efficiency of the analytical flow in the control of raw and refined materials entering the Agricola Grains S.p.A. production chain. The analytical performances being validated by the newly implemented method are: linearity of response, limit of quantification, specificity, precision, intra-laboratory precision, robustness, BIAS. These parameters are used to compare the newly developed method with the one considered as reference - Commission Regulation No. 2568/91 and Commission Implementing Regulation No. 2015/1833. Using the combination of the analytical methods mentioned above, the documentary traceability of the product can be confirmed experimentally, providing relevant information for subsequent marketing.
Resumo:
The Workflow activity was the following: Preliminary phase: Identification of 18 Formalin-fixed paraffin embedded (FFPE) samples (9 patients) («matched» 9 AK lesions and 9 SCC lesions). Working on biopsies samples we perform an extraction and RNA analysis with droplet Digital PCR (ddPCR) and we perform the data analysis. Second and final step phase: Evaluation of additional 39 subjects (36 men and 3 women). Results: We perform an evaluation and comparison of the following miRNA: miR-320 (a miRNA involved in apoptosis and cell proliferation control; miR-204, a miRNA involved in cell proliferation in and miRNA-16-5p, a miRNA involved in apoptosis).Conclusion: Our data suggest that there is no significant variation in the expression of the three tested microRNAs between adjacent AK lesions and squamous-cell carcinoma. However, a relevant trend has been observed Furthermore, by evaluating the miRNA expression trend between keratosis and carcinoma of the same patient, it is observed that there is no "uniform trend": for some samples the expression rises for the transition from AK to SCC and viceversa.
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
Malaria is still one of the major diseases in the world, causing physical and economic problems in tropical regions. Artemisinin (Qinghaosu), a natural compound identified in Artemisia annua L. , is an effective drug mainly against cerebral malaria. The action of this drug is immediate and parasitaemia in the treatment of drug-resistant malaria is rapidily reduced, justifying the industrial production of artemisinin. This article focuses on the industrial production of this potent antimalarial drug, including strategies for enhancing yield using inexpensive and easy steps.
Resumo:
A synthesis of (+)-±-terpineol from (+)-limonene was proposed as a project for undergraduate organic laboratory course. Terpineol is a useful flavor and fragrance compound, and several aspects of this preparation are suited for experimental organic classes, including basic techniques for extraction and analyses of essential oils, different reaction types and the possibility of a high degree of student interest.
Resumo:
A simple analytical method for extraction and quantification of lutein colorant added to yogurt was developed and validated. The method allowed complete extraction of carotenoids using tetrahydrofuran in vortex, followed by centrifugation, partition to diethyl ether/petroleum ether, and drying. The carotenoids dissolved in ethanol were quantified by UV-Vis spectrophotometry. This method showed linearity in the range tested (1.41-13.42 µg g-1), limits of detection and quantification of 0.42 and 1.28 µg g-1, respectively, low relative standard deviation (3.4%) and recovery ranging from 95 to 103%. The method proved reliable for quantification of lutein added to yogurt.
Resumo:
Plastic packaging materials intended for use in food packaging is an area of great interest from the scientific and economic point of view due to the irreversible internationalization and globalization process of food products. Nevertheless, a debate related to food safety aspects has emerged within the scientific community. Therefore, the development of analytical methods that allow identifying and quantifying chemical substances of toxicological potential in the packaging is considered essential. This article focuses on the main analytical methods, including validation parameters, as well as extraction and quantification techniques for determination of volatile organic compounds from food packaging materials.