894 resultados para extractable boron
Resumo:
The objective was to evaluate the effect of the omission of macronutrient and micronutrient boron in dry matter production, the characterization of the symptoms of nutritional deficiencies and mineral composition in plants of ipeca, an experiment was conducted in greenhouse conditions by the technique the missing element and visual diagnosis. A randomized block experimental design with four repetitions and the treatments were: complete and omissions of N, P, K, Ca, Mg, S and B. The analytical results demonstrated that the production of dry matter was affected in all of the treatments with omission of nutrients and that the ipeca plants presented characteristic symptoms of nutritional deficiencies due to the omissions of N, P, K, Ca, Mg, S and B and the concentrations of the macronutrients and of the micronutrient boron in the different parts of the ipeca plant varied when a certain nutrient was omitted in the solution.
Resumo:
Magnetic fields can be produced by natural magnets, artificial magnets, and by circulating electric currents in wires and solenoids. An interesting experiment to observe the interaction between the magnetic field and free charges in a conductor, a magnet falling inside a tube made of conductive materials. The slowing down of the magnet by the appearance of a field in the opposite direction to the original one (Lenz's Law) is function the number of free electrons in the conductor and the electrical properties of this. Based on this, the objective of this study is to analyze the relationship between the electrical properties of conductors, copper and aluminum, with magnetic force on a neodymium magnet-iron-boron magnet falling inside a copper tube and aluminum, positioned vertically. In performing this experiment, we observed that it is a demonstration of Lenz-Faraday’s Law
Resumo:
The macrostructure of an alloy solidification in the raw state is of utmost importance due to its influence on mechanical properties. A structure showing columnar grains is generally undesirable in most applications of cast products and grain refining aims to suppress the formation of these grains and get a fine-grained equiaxed structure that improves the supply of liquid metal and the mechanical properties, as yield strength and tensile strength limit, as well as the tendency of formation of hot cracks. The type and size of grains formed are determined by chemical composition, cooling rate and the use of inoculum for grain refining. Titanium and boron are the major refiners in the aluminum industry and can be added to the molten metal in the form of alloys such as Al-Ti, Al-Ti-B or Al-B. In this paper we will discuss the information obtained from cooling curves and first derivative of the cooling curve to obtain the thermal parameters that influence the process of grain refining alloy AA 356.0
Resumo:
The biomagnetic techniques use different magnetic field detectors to measure parameters of the human physiology. Those techniques present the advantage of being noninvasive and radiation free. Among them we can show up the Superconducting Quantum Interference Device (SQUID), the Current Alternate Biosusceptometry (ACB) and, more recently, the employment of anisotropic magnetoresistive sensors. Those magnetic sensors have a low cost and good sensitivity to measure different physiological parameters using magnetic markers. The biomagnetic techniques have being used successfully through study on the characteristics of the gastrointestinal tract. Recent research, the magnetoresistors were used to evaluate the transit time and localization of magnetic sources in different parts of the gastrointestinal tract. The objective of this work is the characterization, with in vitro tests, of a biomagnetic instrumentation using two 3-axis magnetoresistors arranged in a gradiometric coplanar setup to evaluate esophageal transit time, analyze and compare the results of experimental signals and the magnetic theory, as well as evaluate the instrumentation gain with use of tri-axial sensor front to the mono-axial sensor. The instrumentation is composed by two three-axis sensing magnetometers, precision power supply and amplifier electronic circuits. The sensors fixed in a coplanar setup were separate by distance of 18 cm. The sensitivity tests had been carried through using a cylindrical magnet (ø = 4 mm and h = 4 mm) of neodymium-iron-boron (grid 35). The tests were done moving the permanent magnet on the sensors parallel axis, simulating the food transit in... (Complete abstract click electronic access below)
Resumo:
The Boron Neutron Capture Therapy (BNCT), based on the 10B(n,α)7Li reaction, represents a promising modality for the treatment of cancers that are resistents to conventional treatments. So, it is necessary to find drugs (boron compounds) with high selectivity for each type of cancer, the neutrons source should be well characterized and the rate of 10B(n,α)7Li reaction should be measured with great accuracy as possible. This study aimed to develop a method for manufacturing thin films of boron, for measure the 10B(n,α)7Li reaction, and analyze the uniformity of the films. Five thin films of boron were manufactured with three different concentrations of boric acid, heated to transform the acid in boron, irradiated with thermic neutrons coupled to CR-39 detectors, in BNCT line at the reactor IEA-R1 IPEN/CNEN, São Paulo. After the irradiation, the detectors were chemically attacked with NaOH to reveal the tracks. The methodology presented is effective because it resulted in deposition of boron as thin film enabling the quantitative analysis of 10B(n,α)7Li reaction. The analysis of the uniformity of density of the induced tracks in CR-39 shows that, in most of the films, there is no uniformity in surface distribution of boron, but when the film is divided, we obtain some uniform sectors
Resumo:
The research involving new materials has always been considered as a differential in the development of a technology company. This occurred naturally since ancient times, often motivated by reasons of a certain age, where the most common material used was also the name of your time and may be cited as an example the Bronze Age, and later was the Iron. Currently, the use of firearms are they used in resolving conflicts between countries, or a more equivocal, as an instrument of social banditry make innovations in the area of shielding welcome, whether for personal use, in the form of vests or vehicle such as cars, tanks and even aircraft. In this context, is a Silicon Carbide Ceramic, with low density and high hardness. Thus, the aim of this study is the evaluation and comparison of these materials, seeking to improve their properties by means of additives such as boron and silicon metal and amorphous YAG. For this work, the specimens were pre-shaped by means of uniaxial later to be referred for isostatic pressing and sintering. The maximum percentage for each additive was 5%, except for the YAG whose percentage was 8.2% (mass percentage). All compositions were subjected to the same tests (x-ray diffraction, apparent density, optical microscopy, Vickers hardness, scanning electron Microscopita), so that one could draw a comparison between the materials under study, samples that showed better mechanical properties and micro structural, related here by hardness testing and microscopy (optical and SEM) were the silicon carbide doped with YAG and alumina samples, demonstrating the potential of these materials for ballistic protection. Other compositions have high porosity, which is highly undesirable, since in order to harmful influences on the mechanical properties discussed below
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Mapping of clay, iron oxide and adsorbed phosphate in Oxisols using diffuse reflectance spectroscopy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Soils of the Brazilian Cerrado biome have been found to be deficient in copper (Cu) and zinc (Zn). In this area, an Oxisol was deeply excavated in 1962 during the construction of a hydroelectrical plant, and the exposed saprolite material was abandoned, without any reclamation measures. The abandoned land was a harsh environment for plant growth, and the secondary vegetation has not recovered. A field trial was established in 1992 to assess the effects of different grass species and lime amendments on soil reclamation at the degraded site. In 2011 soil samples were collected at three depths (0-10, 10-20, and 20-40cm) from vegetated and bare plots over tilled saprolite, from an untreated area of the saprolite, and from an Oxisol under native forest, used as external reference. Nineteen years after the reclamation effort was begun, the organic carbon (OC) content of the restored saprolite still was much lower than that of the Oxisol under natural vegetation. The undisturbed Oxisol was deficient in extractable Cu (0.16-0.10mgkg(-1)) and Zn (0.10-0.02mgkg(-1)) and exhibited rather low concentrations of extractable iron (Fe; 5.24-1.47mgkg(-1)) and manganese (Mn; 3.21-0.77mgkg(-1)). However, the saprolite under reclamation showed even lower levels of these elements compared to the native forest soil. In the natural soil, OC, N, extractable Fe, Mn, and Cu showed stratification, but this was not the case for extractable Zn. Although the reclaimed saprolite still was far from predisturbance conditions, the revegetation treatments promoted recovery of OC, N, Fe, Mn, and Cu at the surface layers, which resulted in incipient stratification. Extractable Fe, Mn, and Cu were correlated to OC, whereas no association between Zn and OC was detected. Our results also suggest that reclamation of the excavated saprolite may be constrained by micronutrient deficiencies and mostly by the extremely low levels of Zn and Cu.
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
The concentration of nutrients in plant is related to the soil, fertilization, climate, season, cultivar and cultural practices. Aiming to evaluate the soil chemical properties, the dry matter production of shoots and roots, nutrient content in the plant and the chemical composition of the grass Tierra Verde subjected to levels of organic biofertilizer as nitrogen source, an experiment was conducted in a greenhouse at the Faculty of Veterinary Medicine , UNESP, Araçatuba-SP, January-September 2010. Treatments were arranged in a completely randomized design with six fertilized biofertilizer doses (0, 33, 66, 132, 264, 528 m3 ha-1) and five repetitions for three cuts. We used the model split plot, with doses of biofertilizer considered as main treatments and cuts as sub-plots. We obtained a linear response in the production of dry mass of shoots and roots to the dose of 528 m3 ha-1 of organic biofertilizer. Nitrogen fertilization influenced the soil chemical properties and levels of organic matter, sulfur, boron and manganese, and in foliar levels of phosphorus, potassium and copper. The chemical composition was not altered by the influence of organic biofertilizer doses applied to the soil.
Resumo:
Antioxidants are substances that may protect cells from the damage caused by unstable molecules known as free radicals. The capacity of natural antioxidant from phytochemical has increase attention from researchers and public. However, the extraction process is affecting the activity and the bioavailability of bioactive compounds. The Solanum lycocarpum is a plant of the Brazilian “cerrado”, popularly used as a hypoglycemic, hypocholesterolemic and control of metabolic diseases. Its effects are attributed to the presence of several glycoalkaloids (solamargine, solasonina) and solasodine. Therefore, the purpose of this communication was, investigate the optimization of extraction condition and evaluation of antioxidant activity from fruits of Solanum lycocarpum. The extracts were obtained using different solvent systems, i.e., water, 50% ethanol, ethanol absolute and ethyl ether (1:10 and 1:20) and different extraction processes: maceration with constant agitation at room temperature, maceration with constant agitation and heating at 30°C and ultrasound. The extracts were characterized by the amount of material extracted (1, 6 and 24 h) and the action of antioxidant activity by DPPH method. The results showed that the polar solvent (50% ethanol) and extractive process maceration with agitation to ambient temperature showed higher contents of extractable of fruits of S. lycocarpum (3.4 g %) and also showed higher antioxidant activity (88.57±2.41% de inhibition). This action whether the presence of glycoalkaloids (solamargine, solasonine and solasodine) in fruits S. lycocarpum which are polar compounds and may explain this increased antioxidant action of this extract.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)