994 resultados para extracellular fluid
Resumo:
Viperin is an antiviral protein that has been found to exist in diverse vertebrate organisms and is involved in innate immunity against the infection of a wide range of viruses. However, it is largely unclear as to the potential role played by viperin in bacterial infection. In this study, we identified the red drum Sciaenops ocellatus viperin gene (SoVip) and analyzed its expression in relation to bacterial challenge. The complete gene of SoVip is 2570 bp in length and contains six exons and five introns. The open reading frame of SoVip is 1065 bp, which is flanked by a 5'-untranslated region (UTR) of 34 bp and a 3'-UTR of 350 bp. The deduced amino acid sequence of SoVip shares extensive identities with the viperins of several fish species and possesses the conserved domain of the radical S-adenosylmethionine superfamily proteins. Expressional analysis showed that constitutive expression of SoVip was relatively high in blood, muscle, brain, spleen, and liver, and low in kidney, gill, and heart. Experimental challenges with poly(I:C) and bacterial pathogens indicated that SoVip expression in liver was significantly upregulated by poly(I:C) and the fish pathogen Edwardsiella tarda but down-regulated by the fish pathogens Listonella anguillarum and Streptococcus iniae. Similar differential induction patterns were also observed at cellular level with primary hepatocytes challenged with E. tarda, L anguillarum, and S. iniae. Infection study showed that all three bacterial pathogens could attach to cultured primary hepatocytes but only E. tarda was able to invade into and survive in hepatocytes. Together these results indicate that SoVip is involved in host immune response during bacterial infection and is differentially regulated at transcription level by different bacterial pathogens. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Interpretation of high-resolution two-dimensional (2D) and three-dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low-amplitude reflections, acoustic turbidity and low P-wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate-amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies-change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically-quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10, 351-368.
Resumo:
The Southern Okinawa Trough is an area of focused sedimentation due to particulate matter export from the shelf of the East China Sea and the island of Taiwan. In order to understand the geomicrobiological characteristics of this unique sedimentary environment, bacterial cultivations were carried out for an 8.61 m CASQ core sediment sample. A total of 98 heterotrophic bacterial isolates were characterized based on 16S rRNA gene phylogenetic analysis. These isolates can be grouped into four bacterial divisions, including 13 genera and more than 20 species. Bacteria of the gamma-Proteobacteria lineage, especially those from the Halomonas ( 27 isolates) and Psychrobacter ( 20 isolates) groups, dominate in the culturable bacteria assemblage. They also have the broadest distribution along the depth of the sediment. More than 72.4% of the isolates showed extracellular hydrolytic enzyme activities, such as amylases, proteases, lipases and Dnases, and nearly 59.2% were cold-adapted exoenzyme-producers. Several Halomonas strains show almost all the tested hydrolases activities. The wide distribution of exoenzyme activities in the isolates may indicate their important ecological role of element biogeochemical cycling in the studied deep-sea sedimentary environment.
Resumo:
Protease-producing bacteria are known to play an important role in degrading sedimentary particular organic nitrogen, and yet, their diversity and extracellular proteases remain largely unknown. In this paper, the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea was investigated. The richness of the cultivable protease-producing bacteria reached 10(6) cells/g in all sediment samples. Analysis of the 16S rRNA gene sequences revealed that the predominant cultivated protease-producing bacteria are Gammaproteobacteria affiliated with the genera Pseudoalteromonas, Alteromonas, Marinobacter, Idiomarina, Halomonas, Vibrio, Shewanella, Pseudomonas, and Rheinheimera, with Alteromonas (34.6%) and Pseudoalteromonas (28.2%) as the predominant groups. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria are serine proteases or metalloproteases. Moreover, these proteases have different hydrolytic ability to different proteins, reflecting they may belong to different kinds of serine proteases or metalloproteases. To our knowledge, this study represents the first report of the diversity of bacterial proteases in deep-sea sediments.
Resumo:
Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from the Jade hydrothermal field in the central Okinawa Trough. Fluid-inclusion He-3/He-4 ratios are between 6.2 and 10.1 times the air value (Ra), and with a mean of 7.8Ra, which are consistent with the mid-ocean ridge basalt values [He-3/He-4 approximate to (6Rasimilar to 11Ra)]. Values for Ne-20/Ne-22 are from 10.7 to 11.3, which are significantly higher than the atmospheric ratio (9.8). And the fluid-inclusion Ar-40/Ar-36 ratios range from 287 to 334, which are close to the atmosperic values (295.5). These results indicate that the noble gases of trapped hydrothermal fluids in massive sulfides are a mixture of mantle- and seawater-derived components, and the helium of fluid inclusions is mainly from mantle, the nelium and argon isotope compositions are mainly from seawater.
Resumo:
Helium, rieon and argon isotope compositions of fluid inclusions have been measured in hydrothermal sulfide samples from the TAG hydrothermal field at the Mid-Atlantic Ridge. Fluid-inclusion He-3/He-4 ratios are 2.2-13.3 times the air value (Ra), and with a mean of 7.2 Ra. Comparison with the local vent fluids (He-3/He-4=7.5-8.2 Ra) and mid-ocean ridge basalt values (He-3/He-4=6-11 Ra) shows that the variation range of He-3/He-4 ratios from sulfide-hosted fluid inclusions is significantly large. Values for Ne-20/Ne-22 are from 10.2 to 11.4, which are significantly higher than the atmospheric ratio (9.8). And fluid-inclusion Ar-40/Ar-36 ratios range from 287 to 359, which are close to the atmospheric values (295.5). These results indicate that the noble gases of fluid inclusions in hydrothermal sulfides are a mixture of mantle- and seawater-derived noble gases; the partial mantle-derived components of trapped hydrothermal fluids may be from the lower mantle; the helium of fluid inclusions is mainly from upper mantle; and the Ne and Ar components are mainly from seawater.
Resumo:
The Qikou Depression is the largest hydrocarbon bearing depression in the western part of the Bohai bay basin, dominated by fan delta and lacustrine strata with volcanic and volcaniclastic rocks. In this study, the formation pressures and hydrochemistry of the formation water in the Qikou depression are investigated. It is found that a significant overpressure occurs in the Dongying (Ed) Formation and the first member (Est), the second member (Es2), the third member (Es3) of the Shahejie Formation. The pressure coefficients commonly range from 1.2 to 1.6 with the highest pressure coefficient being 1.7. The analysis of hydrochemistry data shows that the whole depression is dominated by NaHCO3 water type. The concentration of total dissolved solid (TDS) ranges from 2.13 to 53.16 g/L and shows a distinct vertical variation of salinity and ion ratios. High salinity water (TDS> 10 g/L) occurs below a depth of 2500 m, which coincides with the presence of the overpressured system. However, the increasing trend of TDS is diminished below 3500 m because the generation of organic acids in Qikou Depression is inhibited in the presence of overpressure. The analysis of the relationship among different ions indicates that the present-day characteristics of the formation water result from the albitization of feldspar and the dissolution of sodium-rich silicate minerals and halite in the different hydrochemical and pressure systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Many mud diapirs have been identified in the southern Okinawa Trough from a seismic survey using R/V KEXUE I in 2001. The movement and accumulation of free gas related to mud diapirs are discussed in detail by an analysis of fluid potential which is based upon velocity data. It can be found that free gas moves from the higher fluid potential strata to the lower ones and the gas hydrate comes into being during free gas movement meeting the proper criteria of temperature and pressure. In fact, gas hydrates have been found in the upper layers above the mud diapirs and in host rocks exhibiting other geophysical characteristics. As the result of the formation of the gas hydrate, the free gas bearing strata are enclosed by the gas hydrate bearing strata. Due to the high pressure anomalies of the free gas bearing strata the fluid potential increases noticeably. It can then be concluded that the high fluid potential anomaly on the low fluid potential background may be caused by the presence of the free gas below the gas hydrate bearing strata.
Resumo:
Interfacial internal waves in a three-layer density-stratified fluid are investigated using a singular method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. as expected, the third-order solutions describe the third-order nonlinear modification and the third-order nonlinear interactions between the interfacial waves. The wave velocity depends on not only the wave number and the depth of each layer but also on the wave amplitude.
Resumo:
Internal and surface waves generated by the deformations of the solid bed in a two layer fluid system of infinite lateral extent and uniform depth are investigated. An integral solution is developed for an arbitrary bed displacement on the basis of a linear approximation of the complete description of wave motion using a transform method (Laplace in time and Fourier in space) analogous to that used to study the generation of tsunamis by many researchers. The theoretical solutions are presented for three interesting specific deformations of the seafloor; the spatial variation of each seafloor displacement consists of a block section of the seafloor moving vertically either up or down while the time-displacement history of the block section is varied. The generation process and the profiles of the internal and surface waves for the case of the exponential bed movement are numerically illustrated, and the effects of the deformation parameters, densities and depths of the two layers on the solutions are discussed. As expected, the solutions derived from the present work include as special cases that obtained by Kervella et al. [Theor Comput Fluid Dyn 21:245-269, 2007] for tsunamis cased by an instantaneous seabed deformation and those presented by Hammack [J Fluid Mech 60:769-799, 1973] for the exponential and the half-sine bed displacements when the density of the upper fluid is taken as zero.
Resumo:
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a flat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected; the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Set. D, 47(12): 1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if tire density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth's rotation both on the surface wave solutions and the interfacial wave solutions should be considered.
Resumo:
Interfacial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.
Resumo:
In this paper, internal waves in three-layer stratified fluid are investigated by using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. As expected, the first-order solutions are consistent with ordinary linear theoretical results, and the second-order solutions describe the second-order modification on the linear theory and the interactions between the two interfacial waves. Both the first-order and second-order solutions derived depend on the depths and densities of the three-layer fluid. It is also noted that the solutions obtained from the present work include the theoretical results derived by Umeyama as special cases.
Resumo:
In the present paper, the random inter facial waves in N-layer density-stratified fluids moving at different steady uniform speeds are researched by using an expansion technique, and the second-order a symptotic solutions of the random displacements of the density interfaces and the associated velocity potentials in N-layer fluid are presented based on the small amplitude wave theory. The obtained results indicate that the wave-wave second-order nonlinear interactions of the wave components and the second-order nonlinear interactions between the waves and currents are described. As expected, the solutions include those derived by Chen (2006) as a special case where the steady uniform currents of the N-layer fluids are taken as zero, and the solutions also reduce to those obtained by Song (2005) for second-order solutions for random interfacial waves with steady uniform currents if N=2.
Resumo:
In this paper, interfacial waves in three-layer stratified fluid with background current are investigated using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory, and the Kelvin-Helmholtz instability of interfacial waves is studied. As expected, for three-layer stratified fluid with background current, the first-order asymptotic solutions (linear wave solutions), dispersion relation and the second-order asymptotic solutions derived depend on not only the depths and densities of the three-layer fluid but also the background current of the fluids, and the second-order Stokes wave solutions of the associated elevations of the interfacial waves describe not only the second-order nonlinear wave-wave interactions between the interfacial waves but also the second-order nonlinear interactions between the interfacial waves and currents. It is also noted that the solutions obtained from the present work include the theoretical results derived by Chen et al (2005) as a special case. It also shows that with the given wave number k (real number) the interfacial waves may show Kelvin-Helmholtz instability.