935 resultados para expression levels


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Genética) - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: A current challenge in gene annotation is to define the gene function in the context of the network of relationships instead of using single genes. The inference of gene networks (GNs) has emerged as an approach to better understand the biology of the system and to study how several components of this network interact with each other and keep their functions stable. However, in general there is no sufficient data to accurately recover the GNs from their expression levels leading to the curse of dimensionality, in which the number of variables is higher than samples. One way to mitigate this problem is to integrate biological data instead of using only the expression profiles in the inference process. Nowadays, the use of several biological information in inference methods had a significant increase in order to better recover the connections between genes and reduce the false positives. What makes this strategy so interesting is the possibility of confirming the known connections through the included biological data, and the possibility of discovering new relationships between genes when observed the expression data. Although several works in data integration have increased the performance of the network inference methods, the real contribution of adding each type of biological information in the obtained improvement is not clear. Methods: We propose a methodology to include biological information into an inference algorithm in order to assess its prediction gain by using biological information and expression profile together. We also evaluated and compared the gain of adding four types of biological information: (a) protein-protein interaction, (b) Rosetta stone fusion proteins, (c) KEGG and (d) KEGG+GO. Results and conclusions: This work presents a first comparison of the gain in the use of prior biological information in the inference of GNs by considering the eukaryote (P. falciparum) organism. Our results indicates that information based on direct interaction can produce a higher improvement in the gain than data about a less specific relationship as GO or KEGG. Also, as expected, the results show that the use of biological information is a very important approach for the improvement of the inference. We also compared the gain in the inference of the global network and only the hubs. The results indicates that the use of biological information can improve the identification of the most connected proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leukotrienes (LTs) are lipid mediators involved in several inflammatory disorders. We investigated the LT pathway in human T-lymphotropic virus type 1 (HTLV-1) infection by evaluating LT levels in HTLV-1-infected patients classified according to the clinical status as asymptomatic carriers (HACs) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Bioactive LTB4 and CysLTs were both increased in the plasma and in the supernatant of peripheral blood mononuclear cell cultures of HTLV-1-infected when compared to non-infected. Interestingly, CysLT concentrations were increased in HAM/TSP patients. Also, the concentration of plasma LTB4 and LTC4 positively correlated with the HTLV-1 proviral load in HTLV-1-infected individuals. The gene expression levels of LT receptors were differentially modulated in CD4(+) and CD8(+) T cells of HTLV-1-infected patients. Analysis of the overall plasma signature of immune mediators demonstrated that LT and chemokine amounts were elevated during HTLV-1 infection. Importantly, in addition to CysLTs, IP-10 was also identified as a biomarker for HAM/TSP activity. These data suggest that LTs are likely to be associated with HTLV-1 infection and HAM/TSP development, suggesting their putative use for clinical monitoring.