893 resultados para expressed sequences tag
Resumo:
Grapevine leafroll-associated virus 3 (GLRaV-3), the main viral species of the grapevine leafroll complex, causes yield and quality reduction in grapes (Vitis spp.). The coat protein gene was RT-PCR-amplified from total RNA extracted from infected grapevine leaves and the amplified fragment was cloned and completely sequenced. The fragment was subsequently subcloned into the pRSET-C expression vector. The recombinant plasmid was used to transform Escherichia coli BL21:DE3 and express the capsid protein. The coat protein, fused to a 6 His-tag, was purified by affinity chromatography using an Ni-NTA resin. The identity of the purified protein was confirmed by SDS-PAGE and Western blot. The in vitro-expressed protein was quantified and used for rabbit immunizations. The antiserum was shown to be sensitive and specific for the detection of GLRaV-3 in grapevine extracts in Western blot and DAS-ELISA assays, with no unspecific or heterologous reactions against other non-serologically related viruses being observed.
Resumo:
Eucalypt plantation has high economical importance in Brazil; however, it has been attacked by various pathogens under different environmental stress conditions. Disease resistance and survival under unfavorable environmental conditions have revealed that the eucalypt has developed highly efficient defense systems. Here we show the results of the Eucalyptus ESTs Genome Project (FORESTs). Using the expressed sequence tags (ESTs) obtained by the Project, contigs of similar sequences from each cDNA library induced and not induced by stress agents were formed, and cDNA sequences similar to other already known molecules, such as plant-signaling molecules, phytoalexins, lignin biosynthesis pathways, PR-proteins and putative genes corresponding to enzymes involved in the detoxification of reactive oxygen species, were identified. We also present general considerations about the mechanisms of Eucalyptus defense against biotic and abiotic stresses. These data are of extreme importance for future eucalypt breeding programs aimed at developing plants with enhanced resistance against pathogens and environmental stresses.
Resumo:
In mammals, post-testicular sperm maturation taking place in the epididymis is required for the spermatozoa to acquire the abilities required to fertilize the egg in vivo. The epididymal epithelial cells secrete proteins and other small molecules into the lumen, where they interact with the spermatozoa and enable necessary maturational changes. In this study different in silico, in vitro and in vivo approaches were utilized in order to find novel genes responsible for the function of the epididymis and post-testicular sperm maturation in the mouse. Available online genomic databases were analyzed to identify genes potentially expressed in the epididymis, gene expression profiling was performed by studying their expression in different mouse tissues, and significance of certain genes to fertility was assessed by generating genetically modified mouse models. A recently discovered Pate (prostate and testis expression) gene family was found to be predominantly expressed in the epididymis. It represents one of the largest known gene families expressed in the epididymis, and the members code for proteins potentially involved in defense against microorganisms. Through genetically modified mouse models CRISP4 (cysteine-rich secretory protein 4) was identified to regulate sperm acrosome reaction, and BMYC to inhibit the expression of the Myc proto-oncogene in the developing testis. A mouse line expressing iCre recombinase specifically in the epididymis was also generated. This model can be used to generate conditional, epididymis-specific knock-out models, and will be a valuable tool in fertility studies.
Resumo:
14 x 21 cm
Resumo:
10 x 16 cm
Resumo:
The presence of iron uptake (irp-2, fyuA, sitA, fepC, iucA), adhesion (iha, lpfA O157/O141, lpfA O157/O154, efa, toxB) and invasion (inv, ial-related DNA sequences and assignment to the four main Escherichia coli phylogenetic groups (A, B1, B2 e D) were determined in 30 commensal E. coli strains isolated from healthy chickens and in 49 APEC strains isolated from chickens presenting clinical signs of septicemia (n=24) swollen head syndrome (n=14) and omphalitis (n=11) by PCR. None of the strains presented DNA sequences related to the inv, ial, efa, and toxB genes. DNA sequences related to lpfA O157/O154, iucA, fepC, and irp-2 genes were significantly found among pathogenic strains, where iucA gene was associated with septicemia and swollen head syndrome and fepC and irp-2 genes were associated with swollen head syndrome strains. Phylogenetic typing showed that commensal and omphalitis strains belonged mainly to phylogenetic Group A and swollen head syndrome to phylogenetic Group D. Septicemic strains were assigned in phylogenetic Groups A and D. These data could suggest that clonal lineage of septicemic APEC strains have a multiple ancestor origin; one from a pathogenic bacteria ancestor and other from a non-pathogenic ancestor that evolved by the acquisition of virulence related sequences through horizontal gene transfer. Swollen head syndrome may constitute a pathogenic clonal group. By the other side, omphalitis strains probably constitute a non-pathogenic clonal group, and could cause omphalitis as an opportunistic infection. The sharing of virulence related sequences by human pathogenic E. coli and APEC strains could indicate that APEC strains could be a source of virulence genes to human strains and could represent a zoonotic risk.
Resumo:
This article describes the expression of a truncated form of bovine herpesvirus 1 (BoHV-1) glycoprotein E (gE) for use as immunodiagnostic reagent. A 651 nucleotide fragment corresponding to the amino-terminal third (217 amino acids) of BoHV-1 gE - that shares a high identity with the homologous BoHV-5 counterpart - was cloned as a 6×His-tag fusion protein in an Escherichia coli expression vector. A soluble protein of approximately 25 kDa purified from lysates of transformed E. coli was recognized in Western blot (WB) by anti-6xHis-tag and anti-BoHV-1 gE monoclonal antibodies. In addition, the recombinant protein was specifically recognized in WB by antibodies present in the sera of cattle seropositive to BoHV-1 and BoHV-5. An indirect ELISA using the expressed protein as coating antigen performed comparably to a commercial anti-gE ELISA and was able to differentiate serologically calves vaccinated with a gE-deleted BoHV-5 strain from calves infected with BoHV-1. Thus, the truncated gE may be useful for serological tests designed to differentiate BoHV-1/BoHV-5 infected animals from those vaccinated with gE-negative marker vaccines.
Resumo:
Avian pathogenic Escherichia coli (APEC) infections are responsible for significant losses in the poultry industry worldwide. A zoonotic risk has been attributed to APEC strains because they present similarities to extraintestinal pathogenic E. coli (ExPEC) associated with illness in humans, mainly urinary tract infections and neonatal meningitis. Here, we present in silico analyses with pathogenic E. coli genome sequences, including recently available APEC genomes. The phylogenetic tree, based on multi-locus sequence typing (MLST) of seven housekeeping genes, revealed high diversity in the allelic composition. Nevertheless, despite this diversity, the phylogenetic tree was able to cluster the different pathotypes together. An in silico virulence gene profile was also determined for each of these strains, through the presence or absence of 83 well-known virulence genes/traits described in pathogenic E. coli strains. The MLST phylogeny and the virulence gene profiles demonstrated a certain genetic similarity between Brazilian APEC strains, APEC isolated in the United States, UPEC (uropathogenic E. coli) and diarrheagenic strains isolated from humans. This correlation corroborates and reinforces the zoonotic potential hypothesis proposed to APEC.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The complete SSU rDNA was sequenced for 10 individuals of Cladophora vagabunda collected along the coast of Brazil. For C. rupestris (L.) Kütz. a partial SSU rDNA sequence (1634 bp) was obtained. Phylogenetic trees indicate that Cladophora is paraphyletic, but the section Glomeratae sensu lato including C. vagabunda from Brazil, Japan and France, C. albida (Nees) Kütz., C. sericea (Hudson) Kütz., and C. glomerata (L.) Kütz. is monophyletic. Within this group C. vagabunda is paraphyletic. The sequence identity for the SSU rDNA varied from 98.9% to 100% for the Brazilian C. vagabunda, and from 98.3% to 99.7% comparing the Brazilian individuals to the ones from France and Japan. Sequence identity of the Brazilian C. vagabunda to C. albida and C. sericea vary from 98.0% to 98.6%. The SSU rDNA phylogeny support partially the morphological characteristics presented by Brazilian populations of C. vagabunda. On the other hand, C. rupestris from Brazil does not group with C. rupestris from France, both sequences presenting only 96.9% of identity. The inclusion of sequences of individuals from Brazil reinforces the need of taxonomical revision for the genus Cladophora and for the complex C. vagabunda.
Resumo:
The human immunoglobulin lambda variable locus (IGLV) is mapped at chromosome 22 band q11.1-q11.2. The 30 functional germline v-lambda genes sequenced untill now have been subgrouped into 10 families (Vl1 to Vl10). The number of Vl genes has been estimated at approximately 70. This locus is formed by three gene clusters (VA, VB and VC) that encompass the variable coding genes (V) responsible for the synthesis of lambda-type Ig light chains, and the Jl-Cl cluster with the joining segments and the constant genes. Recently the entire variable lambda gene locus was mapped by contig methodology and its one- megabase DNA totally sequenced. All the known functional V-lambda genes and pseudogenes were located. We screened a human genomic DNA cosmid library and isolated a clone with an insert of 37 kb (cosmid 8.3) encompassing four functional genes (IGLV7S1, IGLV1S1, IGLV1S2 and IGLV5a), a pseudogene (VlA) and a vestigial sequence (vg1) to study in detail the positions of the restriction sites surrounding the Vl genes. We generated a high resolution restriction map, locating 31 restriction sites in 37 kb of the VB cluster, a region rich in functional Vl genes. This mapping information opens the perspective for further RFLP studies and sequencing
Resumo:
The inducible tetracycline resistance determinant isolated from Proteus mirabilis cloned into the plasmid pACYC177 was mutagenized by insertion of a mini-Mu-lac phage in order to define the regions in the cloned sequences encoding the structural and regulatory proteins. Three different types of mutants were obtained: one lost the resistance phenotype and became Lac+; another expressed the resistance at lower levels and constitutively; the third was still dependent on induction but showed a lower minimal inhibitory concentration. The mutant phenotypes and the locations of the insertions indicate that the determinant is composed of a repressor gene and a structural gene which are not transcribed divergently as are other known tetracycline determinants isolated from Gram-negative bacteria
Resumo:
We cloned the streptokinase (STK) gene of Streptococcus equisimilis in an expression vector of Escherichia coli to overexpress the profibrinolytic protein under the control of a tac promoter. Almost all the recombinant STK was exported to the periplasmic space and recovered after gentle lysozyme digestion of induced cells. The periplasmic fraction was chromatographed on DEAE Sepharose followed by chromatography on phenyl-agarose. Active proteins eluted between 4.5 and 0% ammonium sulfate, when a linear gradient was applied. Three major STK derivatives of 47.5 kDa, 45 kDa and 32 kDa were detected by Western blot analysis with a polyclonal antibody. The 32-kDa protein formed a complex with human plasminogen but did not exhibit Glu-plasminogen activator activity, as revealed by a zymographic assay, whereas the 45-kDa protein showed a Km = 0.70 µM and kcat = 0.82 s-1, when assayed with a chromogen-coupled substrate. These results suggest that these proteins are putative fragments of STK, possibly derived from partial degradation during the export pathway or the purification steps. The 47.5-kDa band corresponded to the native STK, as revealed by peptide sequencing
Resumo:
The inflammatory response elicited by various stimuli such as microbial products or cytokines is determined by differences in the pattern of cellular gene expression. We have used the differential display RT-PCR (DDRT-PCR) strategy to identify mRNAs that are differentially expressed in various murine cell types stimulated with pro-inflammatory cytokines, microbial products or anti-inflammatory drugs. Mouse embryonic fibroblasts (MEFs) were treated with IFNs, TNF, or sodium salicylate. Also, peritoneal macrophages from C3H/Hej mice were stimulated with T. cruzi-derived GPI-mucin and/or IFN-g. After DDRT-PCR, various cDNA fragments that were differentially represented on the sequencing gel were recovered, cloned and sequenced. Here, we describe a summary of several experiments and show that, when 16 of a total of 28 recovered fragments were tested for differential expression, 5 (31%) were found to represent mRNAs whose steady-state levels are indeed modulated by the original stimuli. Some of the identified cDNAs encode for known proteins that were not previously associated with the inflammatory process triggered by the original stimuli. Other cDNA fragments (8 of 21 sequences, or 38%) showed no significant homology with known sequences and represent new mouse genes whose characterization might contribute to our understanding of inflammation. In conclusion, DDRT-PCR has proven to be a potent technology that will allow us to identify genes that are differentially expressed when cells are subjected to changes in culture conditions or isolated from different organs.
Resumo:
Vertebrate gap junctions are aggregates of transmembrane channels which are composed of connexin (Cx) proteins encoded by at least fourteen distinct genes in mammals. Since the same Cx type can be expressed in different tissues and more than one Cx type can be expressed by the same cell, the thorough identification of which connexin is in which cell type and how connexin expression changes after experimental manipulation has become quite laborious. Here we describe an efficient, rapid and simple method by which connexin type(s) can be identified in mammalian tissue and cultured cells using endonuclease cleavage of RT-PCR products generated from "multi primers" (sense primer, degenerate oligonucleotide corresponding to a region of the first extracellular domain; antisense primer, degenerate oligonucleotide complementary to the second extracellular domain) that amplify the cytoplasmic loop regions of all known connexins except Cx36. In addition, we provide sequence information on RT-PCR primers used in our laboratory to screen individual connexins and predictions of extension of the "multi primer" method to several human connexins.