860 resultados para ethylene-propylene terpolymer (EPDM)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of ionic single-tailed surfactants to aqueous solutions of EO18BO10 [EO = poly(ethylene oxide), BO = poly(1,2-butylene oxide), subscripts denote the number of repeating units] leads to the formation of vesicles, as probed by laser scanning confocal microscopy. Dynamic light scattering showed that the dimensions of these aggregates at early stages of development do not depend on the sign of the surfactant head group charge. Small-angle X-ray scattering (SAXS) analysis indicated the coexistence of smaller micelles of different sizes and varying polymer content in solution. In strong contrast to the dramatic increase of size of dispersed particles induced by surfactants in dilute solution, the d-spacing of corresponding mesophases reduces monotonically upon increasing surfactant loading. This effect points to the suppression of vesicles as a consequence of increasing ionic strength in concentrated solutions. Maximum enhancements of storage modulus and thermal stability of hybrid gels take place at different compositions, indicating a delicate balance between the number and size of polymer-poor aggregates (population increases with surfactant loading) and the number and size of polymersurfactant complexes (number and size decrease in high surfactant concentrations).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges oil larger units in the polymer chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An aqueous solution of a poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) with a composition of EG13CL23EG13 undergoes multiple transitions, from sol-to-gel (hard gel)-to-sol-to-gel (soft gel)-to-sol, in the concentration range 20.035.0wt.-%. Through dynamic mechanical analysis, UV-vis spectrophotometry, small angle X-ray scattering, differential scanning calorimetry, microcalorimetry and 13C NMR spectroscopy, the mechanism of these transitions was investigated. The hard gel and soft gel are distinguished by the crystalline and amorphous state of the PCL. The extent of PEG dehydration and the molecular motion of each block also played a critical role in the multiple transitions. This paper suggests a new mechanism for these multiple transitions driven by temperature changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dormancy is a mechanism that regulates the timing of sprouting (germination) of affected plant parts as well as ensures that the food quality of edible parts is maintained in storage until the following growing season. In yam, however, little is known about the control of tuber initiation or tuber dormancy. The objective of this study was to determine the effects of selected plant growth regulators (PGRs) on tuber initiation and dormancy, using an in vitro system. In two replicated experiments, 2-chloroethylphosphonic acid (ethephon, an ethylene source), abscisic acid (ABA) and gibberellin (GA3) and their inhibitors silver nitrate, fluridone and 2-chloroethyl-trimethylammonium chloride, respectively were added at two concentrations to the culture medium prior to explant culture. Dates of micro-tuber initiation and sprouting (end of dormancy) and tuber number were recorded. In the control (no PGR) in Experiment 1, micro-tubers were initiated at the base of the stem after 176 days and sprouted 235 days later, that is 411 days after culturing. Most PGR treatments had only small effects (30 days) on the duration of dormancy and the time of micro-tuber initiation. However, in GA3 micro-tuber initiation occurred after 76 days, about 100 days earlier than in the control, whereas fluridone affected the position of micro-tubers and duration of dormancy. With fluridone treatments, tubers were found at the base of the stem (normal position) and on lower and upper nodes. Lower node tubers sprouted within 225 days of culturing compared with about 420 days after culturing at other nodal positions and in other PGR treatments. These data suggest an important role for ABA and gibberellic acid in yam micro-tuber initiation and the induction of dormancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use ellipsometry to investigate a transition in the morphology of a sphere-forming diblock copolymer thin-film system. At an interface the diblock morphology may differ from the bulk when the interfacial tension favours wetting of the minority domain, thereby inducing a sphere-to-lamella transition. In a small, favourable window in energetics, one may observe this transition simply by adjusting the temperature. Ellipsometry is ideally suited to the study of the transition because the additional interface created by the wetting layer affects the polarisation of light reflected from the sample. Here we study thin films of poly(butadiene-ethylene oxide) (PB-PEO), which order to form PEO minority spheres in a PB matrix. As temperature is varied, the reversible transition from a partially wetting layer of PEO spheres to a full wetting layer at the substrate is investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/ 6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helicallike arrangements. Furthermore, calculations indicate that backbone ... side chain interactions involving the N-H of the amide groups and the pi clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand,MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of the tetrakis(cyclooctene)rhodium(I) complex [{Rh(C8H14-c)2(-Cl)}2] with the appropriate divinyldisiloxane molecules (ViSiR2)2O (R=Me or Ph) yields, by displacement of the cycloctene ligands, the complexes [{Rh(ViSiR2)2O(-Cl)}2] (R=Me (1) or Ph (2)). These react further with a tertiary phosphine PR3 to give cis-[Rh{(ViSiR2)2O}(PR3)Cl] (R=Ph or C6H4Me-p). The complex cis-[{Rh(Vi2SiMe2)(-Cl)}2] (7) was similarly prepared by the displacement of ethylene from [{Rh(C2H4)2(-Cl)}2] by the divinyldimethylsilane Vi2SiMe2. X-ray molecular structures of the crystalline complexes 1, 2 and 7 show a distorted square planar Rh(I) environment, the CH2CH groups being orthogonal to this plane; 1 and 2 have the Rh(ViSiR2)2O metallacycle in the chair conformation, but differ in the nature of the central Rh(Cl)RhCl core, which is planar for 1 and puckered for 2, but each of 1 and 2 is the rac-diastereoisomer, whereas 7 has the meso-configuration. In solution 1 and 2 exist as a mixture of isomers, probably the rac- and meso-pairs as established by multinuclear NMR spectral studies. A series of saturation transfer NMR spectroscopic experiments showed that the divinyldisiloxane ligands in [{Rh(ViSiPh2)2O(-Cl)}2] underwent a dynamic process involving the dissociation, rotation and then reassociation of the vinyl groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A particulate microemulsion is generated in a simple two-component system comprising an amphiphilic copolymer (Pluronic P123) in mixtures with tannic acid. This is correlated to complexation between the poly(ethylene oxide) in the Pluronic copolymer and the multiple hydrogen bonding units in tannic acid which leads to the breakup of the ordered structure formed in gels of Pluronic copolymers, and the formation of dispersed nanospheres containing a bicontinuous internal structure. These novel nanoparticles termed emulsomes are self-stabilized by a coating layer of Pluronic copolymer. The microemulsion exhibits a pearlescent appearance due to selective light scattering from the emulsion droplets. This simple formulation based on a commercial copolymer and a biofunctional and biodegradable additive is expected to find applications in the fast moving consumer goods sector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Procedures for obtaining molecular orientational parameters from wide angle X-ray scattering patterns of samples of thermotropic liquid crystalline polymers are presented. The methods described are applied to an extrusion-aligned sample of a random copolyester of poly(ethylene terephthalate) (PET) and p-acetoxybenzoic acid. Values of the orientational parameters are obtained from both the interchain and intrachain maxima in the scattering pattern. The differences in the values so derived suggest some level of local rotational correlation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new approach that allows the determination of force-field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on a tight coupling between experimentally derived structure factors and computer modelling. We separate the molecular potential into non-interacting terms representing respectively bond stretching, angle bending and torsional rotation. The parameters for each of the potentials are extracted directly from experimental data through comparison of the experimental structure factor and those derived from atomistic level molecular models. The viability of these force fields is assessed by comparison of predicted large-scale features such as the characteristic ratio. The procedure is illustrated on molten poly(ethylene) and poly(tetrafluoroethylene).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical microstructures of thin sections of two liquid crystalline polymers are examined in the polarizing microscope. The polymers are random copolyesters based on hydroxybenzoic and hydroxynaphthoic acids (B-N), and hydroxybenzoic acid and ethylene terephthalate (B-ET). Sections cut from oriented samples, so as to include the extrusion direction, show microstructures in which there is no apparent preferred orientation of the axes describing the local optical anisotropy. The absence of preferred orientation in the microstructure, despite marked axial alignment of molecular chain segments as demonstrated by X-Ray diffraction, is interpreted in terms of the polymer having biaxial optical properties. The implication of optical biaxiality is that, although the mesophases are nematic, the orientation of the molecules is correlated about three (orthogonal) axes over distances greater than a micron. The structure is classified as a multiaxial nematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determination of the local structure of a polymer glass by scattering methods is complex due to the number of spatial and orientational correlations, both from within the polymer chain (intrachain) and between neighbouring chains (interchain), from which the scattering arises. Recently considerable advances have been made in the structural analysis of relatively simple polymers such as poly(ethylene) through the use of broad Q neutron scattering data tightly coupled to atomistic modelling procedures. This paper presents the results of an investigation into the use of these procedures for the analysis of the local structure of a-PMMA which is chemically more complex with a much greater number of intrachain structural parameters. We have utilised high quality neutron scattering data obtained using SANDALS at ISIS coupled with computer models representing both the single chain and bulk polymer system. Several different modelling approaches have been explored which encompass such techniques as Reverse Monte Carlo refinement and energy minimisation and their relative merits and successes are discussed. These different approaches highlight structural parameters which any realistic model of glassy atactic PMMA must replicate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of VO(acac)(2) with the ONO-chelator obtained by the condensation of salicylaldehyde with 2-hydroxybenzoylhydrazine (H2L) in a monohydric alcohol. (ROH) medium produces VO(OR)L]-type oxidoalkoxido complexes (1-7) where R = Me, Pr-n, Pr-i, Bu-n, Bu-i, Bu-t and (n)Pen. All the complexes show the metal atom to have a five-coordinate square pyramidal environment, although in some complexes there is an additional weak V center dot center dot center dot O interaction in the sixth axial position. In acetonitrile medium and in the presence of a cis-diol (ethylene glycol), H2L reacts with VO(acac)(2) to form a six-coordinate complex, [VO(OCH2CH2OH)L] (8). When the reaction is carried out in acetonitrile medium in the presence of 2-amino ethanol, a completely different type of product containing the square pyramidal complex anion [VO2L](-) associated with the cation [NH3CH2CH2OH](+) is obtained. It was noted previously that on being reacted with monodentate nitrogen donor bases B (which are stronger than pyridine), the [VO(OR)L] complexes react to form the same complex anion [VO2L](-) associated with the corresponding cation [BH](+). The coordination environment around the V(V) acceptor center of the water soluble [BH](+)[VO2L](-)satisfies one of the several requirements for an efficient antidiabetic vanadium species such as water solubility, nature of donor atoms of the ligand and their disposition around the VO2+ acceptor center.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-complementary tweezer-molecules based on a naphthalenediimide core self-assemble into supramolecular dimers through mutual -stacking and hydrogen bonding. The resulting motif is extremely stable in solution (Ka = 105 M1), and its attachment to one terminal position of a poly(ethylene glycol) chain leads to a doubling of the polymer's apparent molecular weight.