989 resultados para epsilon(Nd)
Resumo:
The igneous geochemistry of lavas and breccias from the basement of Sites 790 and 791, and pumice clasts from the Pliocene-Pleistocene sedimentary section of Sites 788, 790, 791, and 793 were studied. Arc volcanism became silicic about 1.5 m.y. before the inception of rifting in the Sumisu Rift at 2 Ma, but eruption of these silicic magmas reflects changes in stress regime, especially during the last 130,000 yr, rather than crustal anatexis. Arc magmas have had a larger proportion of slab-derived components since the inception of rifting than before, but are otherwise similar. Rift basalts and rhyolites are derived from a different source than are arc andesites to rhyolites. The rift source has less slab-derived material and is an E-MORB-like source, in contrast to an N-MORB-type source overprinted with more slab-derived material beneath the arc. Rift magma types, in the form of rare pumice and lithic clasts, preceded the rift, and the earliest magmas that erupted in the rift already differed from those of the arc. The earliest large rift eruption produced an exotic explosion breccia ("mousse") despite eruption at >1800 mbsl. Although this rock type is attributed primarily to high magmatic water content, the clasts are more MORB-like in trace element and isotopic composition than are modern Mariana Trough basalts. After rifting began, arc volcanism continued to be predominantly silicic, with individual pumice deposits containing clasts that vary in composition by about 5 wt% SiO2, or about as much as in historical eruptions of submarine Izu Arc volcanoes. The overall variations in magma composition with time during the inception of arc rifting are broadly similar in the Sumisu Rift and Lau Basin, though newly tapped OIB-type mantle seems to be present earlier during basin formation in the Sumisu than Lau case.
Resumo:
On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.
Resumo:
The Duolong porphyry Cu-Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118 Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81 wt.%, K2O of 2.90-5.17 wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N = 6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27 per mil; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metsomatizied mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit.
Resumo:
Comprehensive geochronological and isotope-geochemical studies showed that the Late Quaternary Elbrus Volcano (Greater Caucasus) experienced long (approximately 200 ka) discrete evolution with protracted periods of igneous quiescence (approximately 50 ka) between large-scale eruptions. Volcanic activity of Elbrus is subdivided into three phases: Middle Neopleistocene (225-170 ka), Late Neopleistocene (110-70 ka), and Late Neopleistocene - Holocene (earlier than 35 ka). Petrogeochemical and isotope (Sr-Nd-Pb) signatures of Elbrus lavas point to their mantle-crustal origin. It was shown that hybrid parental magmas of the volcano formed due to mixing and/or contamination of deep-seated mantle melts by Paleozoic upper crustal material of the Greater Caucasus. Mantle reservoir that participated in genesis of Elbrus lavas as well as most other Neogene-Quaternary magmatic rocks of Caucasus was represented by the lower mantle "Caucasus" source. Primary melts generated by this source in composition corresponded to K-Na subalkali basalts with the following isotopic characteristics: 87Sr/86Sr = 0.7041+/-0.0001, e-Nd = +4.1+/-0.2, 147Sm/144Nd = 0.105-0.114, 206Pb/204Pb = 18.72, 207Pb/204Pb = 15.62, and 208Pb/204Pb = 38.78. Temporal evolution of isotope characteristics for lavas of the Elbrus Volcano is well described by a Sr-Nd mixing hyperbole between "Caucasus" source and estimated average composition of the Paleozoic upper crust of the Greater Caucasus. It was shown that, with time, proportions of mantle material in parental magmas of Elbrus gently increased: from ~60% at the Middle-Neopleistocene phase of activity to ~80% at the Late Neopleistocene - Holocene phase, which indicates an increase of activity of a deep-seated source at decreasing input of crustal melts or contamination with time. Unraveled evolution of the volcano with discrete eruption events, lacking signs of cessation of the Late Neopleistocene - Holocene phase, increasing contribution of the deep-seated mantle source in genesis of Elbrus lavas with time as deduced from isotope-geochemical data, as well as numerous geophysical and geological evidence indicate that Elbrus is a potentially active volcano and its eruptions may be resumed. Possible scenarios were proposed for evolution of the volcano, if its eruptive activity continued.
Resumo:
Age estimates for the opening of Drake Passage range from 49 to 17 million years ago (Ma), complicating interpretations of the relationship between ocean circulation and global cooling. Secular variations of neodymium isotope ratios at Agulhas Ridge (Southern Ocean, Atlantic sector) suggest an influx of shallow Pacific seawater approximately 41 Ma. The timing of this connection and the subsequent deepening of the passage coincide with increased biological productivity and abrupt climate reversals. Circulation/productivity linkages are proposed as a mechanism for declining atmospheric carbon dioxide. These results also indicate that Drake Passage opened before the Tasmanian Gateway, implying the late Eocene establishment of a complete circum-Antarctic pathway.
Resumo:
Pb, Nd, and Sr isotopic results for lavas of the Cretaceous Ontong Java and Manihiki oceanic plateaus fall well within the modern-day oceanic island or hot pot field. The data provide no evidence of old continental basements but indicate a major involvement of 'Kerguelen-type' or 'EM-I'-like mantle in the sources of both plateaus, which appear to have probably been formed, at least in part, by hotspots. However, the presently active hotspots that Pacific plate reconstructions suggest might have been possible plateau sources lack Kerguelen-type isotopic compositions. Either these hotspots did not participate in the formation of the two plateaus, or if they did, Kerguelen-type material must have been volumetrically much more important early in their existence. Two hypotheses for the origins of these plateaus which involve hotspot sources are consistent with the sparse available geochemical, geochronological and geophysical data. The first holds that the plateaus formed cataclysmically in association with surfacing plume heads; the second posits a relatively steady but robust hotspot at or near a ridge crest and requires a much longer period of formation. A near-ridge origin appears to be indicated by evidence that most of the Pacific plateaus were built largely on relatively young ocean crust. However, we suggest that a near-ridge origin is also compatible with the plume head concept in that plume heads appear very likely to become associated with spreading axes through their influence on rift propagation, which should be substantially greater than for ordinary hotspots. In either case, the lack of hotspot tracks (seamount chains) attached to the two plateaus would be a consequence of ridge migration or rift propagation in a near-ridge setting.
Resumo:
Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge (Feigenson et al., 2004, doi:10.1029/2003GC000621; Herrstom et al., 1995, doi:10.1130/0091-7613(1995)023<0617:VILCAW>2.3.CO;2; Abratis and Woerner, 2001) or eroded fore-arc complexes (Goss and Kay, 2006, doi:10.1029/2005GC001163) but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (~63-190 mm/yr) and are comparable to the magnitude of subducting Cocos plate motion (approx85 mm/yr). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones.
Resumo:
Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW) are the main conduits for the supply of dissolved silicon (silicic acid) from the deep Southern Ocean (SO) to the low-latitude surface ocean and therefore have an important control on low-latitude diatom productivity. Enhanced supply of silicic acid by AAIW (and SAMW) during glacial periods may have enabled tropical diatoms to outcompete carbonate-producing phytoplankton, decreasing the relative export of inorganic to organic carbon to the deep ocean and lowering atmospheric pCO2. This mechanism is known as the "silicic acid leakage hypothesis" (SALH). Here we present records of neodymium and silicon isotopes from the western tropical Atlantic that provide the first direct evidence of increased silicic acid leakage from the Southern Ocean to the tropical Atlantic within AAIW during glacial Marine Isotope Stage 4 (~60-70 ka). This leakage was approximately coeval with enhanced diatom export in the NW Atlantic and across the eastern equatorial Atlantic and provides support for the SALH as a contributor to CO2 drawdown during full glacial development.
Resumo:
Geological reconstructions and general circulation models suggest that the onset of both Northern Hemisphere glaciation, 2.7 Myr ago, and convection of Labrador Sea Water (LSW) were caused by the closure of the Panama Gateway ~4.5 Myr ago. Time series data that have been obtained from studies of ferromanganese crusts from the northwestern Atlantic suggest that radiogenic isotopes of intermediate ocean residence time (Pb and Nd) can serve as suitable tracers to reconstruct these events. However, it has been unclear until now as to whether the changes that have been observed in isotope composition at this time are the result of increased thermohaline circulation or due to the effects of increased glacial weathering. In this paper we adopt a box model approach to demonstrate that the shifts in radiogenic isotope compositions are unlikely to be due to changes in convection in LSW but can be explained in terms of increases of erosion levels due to the glaciation of Greenland and Canada. Furthermore, we provide experimental evidence for the incongruent release of a labile fraction of strongly radiogenic Pb and nonradiogenic Nd from continental detritus eroding into the Labrador Sea. This can be attributed to the glacial weathering of old continents and accounts for the paradox that one of the areas of the world most deficient in radiogenic Pb should provide such a rich supply of radiogenic Pb to the oceans. An important general conclusion is that the compositions of radiogenic isotopes in seawater are not always a reflection of their continental sources. Perhaps more importantly, the transition from chemical weathering to mechanical erosion is likely to result in significant variations in radiogenic tracers in seawater.
Resumo:
Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40-60 m.y.), the Palau-Kyushu Ridge (29-44 m.y.) and the Parece Vela and Shikoku basins (17-30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr = 0.7026 - 0.7032, 143Nd/144Nd = 0.51300 - 0.51315, and 206Pb/204Pb = 17.8 - 18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr = 0.7038 - 0.7040, 143Nd/144Nd = 0.51285 - 0.51291 and 206Pb/204Pb = 18.8 - 19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have delta207Pb values of 0 to +6 and delta208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr = 7032 - 0.7035, 143Nd/144Nd = 0.51308 - 0.51310 and 206Pb/204Pb = 18.4 - 18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc. At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 (Hart, 1988, doi:10.1016/0012-821X(88)90131-8)) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 (Hart, 1988)). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb (Hart, 1988)). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.
Resumo:
The termination of the African Humid Period in northeastern Africa during the early Holocene was marked by the southward migration of the rain belt and the disappearance of the Green Sahara. This interval of drastic environmental changes was also marked by the initiation of food production by North African huntergatherer populations and thus provides critical information on human-environment relationships. However, existing records of regional climatic and environmental changes exhibit large differences in timing and modes of the wet/dry transition at the end of the African Humid Period. Here we present independent records of changes in river runoff, vegetation and erosion in the Nile River watershed during the Holocene obtained from a unique sedimentary sequence on the Nile River fan using organic and inorganic proxy data. This high-resolution reconstruction allows to examine the phase relationship between the changes of these three parameters and provides a detailed picture of the environmental conditions during the Paleolithic/Neolithic transition. The data show that river runoff decreased gradually during the wet/arid transition at the end of the AHP whereas rapid shifts of vegetation and erosion occurred earlier between 8.7 and about 6 ka BP. These asynchronous changes are compared to other regional records and provide new insights into the threshold responses of the environment to climatic changes. Our record demonstrates that the degradation of the environment in northeastern Africa was more abrupt and occurred earlier than previously thought and may have accelerated the process of domestication in order to secure sustainable food resources for the Neolithic African populations.