967 resultados para endoplasmic reticulum aminopeptidase 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ultrastructural study of the hypoglossal nucleus (XII) in the rat has revealed two distinct neuronal populations. Hypoglossal motoneurons comprised the largest population of neurons in XII and were identified following injection of horseradish peroxidase (HRP) into the tongue. Motoneurons were large (25-50(mu)m), multipolar in shape and distributed throughout XII. The nucleus was large, round and centrally located, and the cytoplasm was characterized by dense lamellar arrays of rough endoplasmic reticulum. In contrast, a second population of small (10-18(mu)m), round to oval shaped neurons was found restricted to the ventral and dorsolateral regions of XII. The nucleus was markedly invaginated and eccentric, the cytoplasm scant and filled with free ribosomes, and the absence of lamellar arrays of rough endoplasmic reticulum was conspicuous. Neurons of this type were never found to contain HRP reaction product. These results demonstrate that the hypoglossal nucleus does not consist solely of motoneurons, but includes a distinctly separate, presumably non-motoneuronal pool. Arguments are presented in favor of this second neuron population being interneurons. The functional significance of these findings in relation to tongue control is discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the levels of intracellular calcium mediate multiple biological effects, including apoptosis, in some tumor cells. Early studies demonstrated that prostate cancer cells are highly sensitive to alterations in the levels of their intracellular calcium pools. Furthermore, it has been established that apoptosis in prostate cancer could be initiated through calcium-selective ionophores, or inhibitors of intracellular calcium pumps. High sensitivity to changes in intracellular calcium levels may therefore be exploited as a novel mechanism for controlling prostate cancer apoptotic thresholds; however, the mechanisms associated with this process are poorly understood. To investigate the role of calcium as a mediator of prostate cancer cell death and its effects on caspase activation, LNCaP and PC-3 cell response to the calcium ionophore A23187, were examined. LNCaP cells were highly sensitive to changes in intracellular calcium, and subtoxic concentrations of A23187 facilitated apoptosis initiated by cytokines (TNF or TRAIL). In contrast, PC-3 cell death was not affected by A23187 or cytokines. A23187 caused rapid and concentration-dependent activation of calpain in LNCaP (but not PC-3 cells) which correlated with cleavage of calpain substrates caspase-7 and PTP1B. Cleavage of PTP1B from a 50 kDa to 42 kDa protein correlated with its translocation from the endoplasmic reticulum to the cytosol and with inhibition of tyrosine phosphorylation. Caspase-7 was cleaved from a 35 kDa to 30 kDa protein in response to A23187 in LNCaP (but not PC-3) cells and correlated with activation of both upstream and downstream caspases. Extracts from A23187-treated LNCaP cells, or PC-3 cells transiently transfected with calpain, mediated similar processing of in vitro transcribed and translated (TNT) caspase-7. In vitro processing of caspase-7 correlated with its proteolytic activation, which was inhibited by calpain inhibitor (calpeptin) and to some degree, by caspase inhibitors (zVAD, DEVD). Together, these results suggest that calpain is directly involved in calcium-mediated apoptosis of prostate cancer cells through activation and cleavage of caspase-7 and other substrates. Loss of calpain activation may therefore play a critical role in apoptotic resistance of some prostate cancer cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cartilage oligomeric matrix protein (COMP) is a large, homopentameric, extracellular matrix glycoprotein. Mutations in COMP cause two skeletal dysplasias: pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EMD1). These dwarfing conditions are caused by retention of misfolded mutant COMP with type IX collagen and matrilin-3 (MATN3) in the rough endoplasmic reticulum (rER) of the chondrocyte. These proteins form a matrix in the rER that continues to expand until it fills the entire cell, eventually causing cell death. Interestingly, loss of COMP in COMP null mice does not affect normal bone development or growth, suggesting that elimination of COMP (wildtype and mutant) expression may prevent PSACH. The hypothesis of these studies was that a hammerhead ribozyme could eliminate or knockdown COMP mRNA expression in PSACH chondrocytes . To test this hypothesis, a human chondrocyte model system that recapitulates the PSACH chondrocyte phenotype was developed by over-expressing mutant (mt-) COMP in normal chondrocytes using a recombinant adenovirus. Chondrocytes over-expressing mt-COMP developed giant rER cisternae containing COMP, type IX collagen and MATN3. Deconvolution microscopy and computer modeling showed that these proteins formed an ordered matrix surrounding a type II pro-collagen core. Additionally, the results show that a hammerhead ribozyme, ribozyme 56 (Ribo56) reduced over-expressed mt-COMP in COS cells and endogenous COMP in normal chondrocytes and mt-COMP in three PSACH chondrocytes cell line (with different mutations) by 40-70%. Altogether, these studies show that the PSACH cellular phenotype can be created in vitro and that the mt-COMP protein burden can be reduced by the presence of a COMP-specific ribozyme. Future studies will focus on designing ribozymes or short interfering RNA (siRNA) technologies that will result in better knockdown of COMP expression as well as the temporal constraints imposed by the PSACH phenotype. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receptor-mediated endocytosis is well known for its degradation and recycling trafficking. Recent evidence shows that these cell surface receptors translocate from cell surface to different cellular compartments, including the Golgi, mitochondria, endoplasmic reticulum (ER), and the nucleus to regulate physiological and pathological functions. Although some trafficking mechanisms have been resolved, the mechanism of intracellular trafficking from cell surface to the Golgi is not yet completed understood. Here we report a mechanism of Golgi translocation of EGFR in which EGF-induced EGFR travels to the Golgi via microtubule (MT)-dependent movement by interacting with dynein and fuses with the Golgi through syntaxin 6 (Syn6)-mediated membrane fusion. We also demonstrate that the Golgi translocation of EGFR is necessary for its consequent nuclear translocation and transcriptional activity. Interestingly, foreign protein such as bacterial cholera toxin, which is known to activate its pathological function through the Golgi/ER retrograde pathway, also utilizes the MT/Syn6 pathway. Thus, the MT, and syntaxin 6 mediated trafficking pathway from cell surface to the Golgi and ER defines a comprehensive retrograde trafficking route for both cellular and foreign molecules to travel from cell surface to the Golgi and the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (tTGase) is an enzyme that catalyzes the posttranslational modification of proteins via Ca2+-dependent cross-linking reactions. In this study, we extended our earlier observation that tTGase is highly expressed in MCF-7 human breast carcinoma cells selected for the multidrug resistance phenotype (MCF-7/DOX). To directly assess the involvement of tTGase in drug resistance, parental MCF-7 (MCF-7/WT) cells were transfected with cDNAs encoding either a catalytically active (wildtype) or inactive (mutant) tTGase protein. Expression of wildtype tTGase led to spontaneous apoptosis in MCF-7/WT cells, while the mutant tTGase was tolerated by the cells but did not confer resistance to doxorubicin. Analysis of calcium by a spectrofluorometric technique revealed that MCF-7/DOX cells exhibit a defective mechanism in intracellular calcium mobilization, which may play a role in preventing the in situ activation of tTGase and thus allowing the cells to grow despite expressing this enzyme. An elevation in intracellular calcium by treatment with the calcium ionophore A23187 induced rapid and substantial apoptosis in MCF-7/DOX cells as determined by morphological and biochemical criteria. Pretreatment of MCF-7/DOX cells with a tTGase-specific inhibitor (monodansylcadaverine) suppressed A12387-induced apoptosis, suggesting the possible involvement of tTGase-catalyzed protein cross-linking activity. A23187-induced apoptosis in MCF-7/DOX cells was further characterized by PARP cleavage and activation of downstream caspases (-3, -6, and -7). Another interesting aspect of tTGase/A23187-induced apoptosis in MCF-7/DOX cells was that these cells failed to show any prototypic changes associated with the mitochondrial (altered membrane potential, cytochrome c release, caspase-9 activation), receptor-induced (Bid cleavage), or endoplasmic reticulum-stressed (caspase-12 activation) apoptotic pathways. In summary, our data demonstrate that, despite being highly resistant to conventional chemotherapeutic drugs, MCF-7/DOX cells are highly sensitive to apoptosis induced by increased intracellular calcium. We conclude that tTGase does not play a direct role in doxorubicin resistance in MCF-7/DOX cells, but may play a role in enhancing the sensitivity of these cells to undergo apoptosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in excitable cells often acts as a negative feedback signal on firing of action potentials and the associated voltage-gated Ca2+ influx. Increased [Ca2+]i stimulates Ca2+-sensitive K+ channels (IK-Ca), and this, in turn, hyperpolarizes the cell and inhibits Ca2+ influx. However, in some cells expressing IK-Ca the elevation in [Ca2+]i by depletion of intracellular stores facilitates voltage-gated Ca2+ influx. This phenomenon was studied in hypothalamic GT1 neuronal cells during store depletion caused by activation of gonadotropin-releasing hormone (GnRH) receptors and inhibition of endoplasmic reticulum (Ca2+)ATPase with thapsigargin. GnRH induced a rapid spike increase in [Ca2+]i accompanied by transient hyperpolarization, followed by a sustained [Ca2+]i plateau during which the depolarized cells fired with higher frequency. The transient hyperpolarization was caused by the initial spike in [Ca2+]i and was mediated by apamin-sensitive IK-Ca channels, which also were operative during the subsequent depolarization phase. Agonist-induced depolarization and increased firing were independent of [Ca2+]i and were not mediated by inhibition of K+ current, but by facilitation of a voltage-insensitive, Ca2+-conducting inward current. Store depletion by thapsigargin also activated this inward depolarizing current and increased the firing frequency. Thus, the pattern of firing in GT1 neurons is regulated coordinately by apamin-sensitive SK current and store depletion-activated Ca2+ current. This dual control of pacemaker activity facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process may also provide a general mechanism for the integration of voltage-gated Ca2+ influx into receptor-controlled Ca2+ mobilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12°C). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport of peptides across the membrane of the endoplasmic reticulum for assembly with MHC class I molecules is an essential step in antigen presentation to cytotoxic T cells. This task is performed by the major histocompatibility complex-encoded transporter associated with antigen processing (TAP). Using a combinatorial approach we have analyzed the substrate specificity of human TAP at high resolution and in the absence of any given sequence context, revealing the contribution of each peptide residue in stabilizing binding to TAP. Human TAP was found to be highly selective with peptide affinities covering at least three orders of magnitude. Interestingly, the selectivity is not equally distributed over the substrate. Only the N-terminal three positions and the C-terminal residue are critical, whereas effects from other peptide positions are negligible. A major influence from the peptide backbone was uncovered by peptide scans and libraries containing d amino acids. Again, independent of peptide length, critical positions were clustered near the peptide termini. These approaches demonstrate that human TAP is selective, with residues determining the affinity located in distinct regions, and point to the role of the peptide backbone in binding to TAP. This binding mode of TAP has implications in an optimized repertoire selection and in a coevolution with the major histocompatibility complex/T cell receptor complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The malarial parasite dramatically alters its host cell by exporting and targeting proteins to specific locations within the erythrocyte. Little is known about the mechanisms by which the parasite is able to carry out this extraparasite transport. The fungal metabolite brefeldin A (BFA) has been used to study the secretory pathway in eukaryotes. BFA treatment of infected erythrocytes inhibits protein export and results in the accumulation of exported Plasmodium proteins into a compartment that is at the parasite periphery. Parasite proteins that are normally localized to the erythrocyte membrane, to nonmembrane bound inclusions in the erythrocyte cytoplasm, or to the parasitophorous vacuolar membrane accumulate in this BFA-induced compartment. A single BFA-induced compartment is detected per parasite and the various exported proteins colocalize to this compartment regardless of their final destinations. Parasite membrane proteins do not accumulate in this novel compartment, but accumulate in the endoplasmic reticulum (ER), suggesting that the parasite has two secretory pathways. This alternate secretory pathway is established immediately after merozoite invasion and at least some dense granule proteins also use the alternate pathway. The BFA-induced compartment exhibits properties that are similar to the ER, but it is clearly distinct from the ER. We propose to call this new organelle the secondary ER of apicomplexa. This ER-like organelle is an early, if not the first, step in the export of Plasmodium proteins into the host erythrocyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transporter associated with antigen processing (TAP) is essential for the transport of antigenic peptides across the membrane of the endoplasmic reticulum. In addition, TAP interacts with major histocompatibility complex class I heavy chain (HC)/β2-microglobulin (β2-m) dimers. We have cloned a cDNA encoding a TAP1/2-associated protein (TAP-A) corresponding in size and biochemical properties to tapasin, which was recently suggested to be involved in class I–TAP interaction (Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. (1996) Immunity 5, 103–114). The cDNA encodes a 448-residue-long ORF, including a signal peptide. The protein is predicted to be a type I membrane glycoprotein with a cytoplasmic tail containing a double-lysine motif (-KKKAE-COOH) known to maintain membrane proteins in the endoplasmic reticulum. Immunoprecipitation with anti-TAP1 or anti-TAP-A antisera demonstrated a consistent and stoichiometric association of TAP-A with TAP1/2. Class I HC and β2-m also were coprecipitated with these antisera, indicating the presence of a pentameric complex. In pulse–chase experiments, class I HC/β2-m rapidly dissociated from TAP1/2-TAP-A. We propose that TAP is a trimeric complex consisting of TAP1, TAP2, and TAP-A that interacts transiently with class I HC/β2-m. In peptide-binding assays using cross-linkable peptides and intact microsomes, TAP-A bound peptides only in the presence of ATP whereas binding of peptides to TAP1/2 was ATP-independent. This suggests a direct role of TAP-A in peptide loading onto class I HC/β2-m dimer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism that perform a variety of essential functions in higher plants. Studies over the past 30 years have supported a model in which flavonoid metabolism is catalyzed by an enzyme complex localized to the endoplasmic reticulum [Hrazdina, G. & Wagner, G. J. (1985) Arch. Biochem. Biophys. 237, 88–100]. To test this model further we assayed for direct interactions between several key flavonoid biosynthetic enzymes in developing Arabidopsis seedlings. Two-hybrid assays indicated that chalcone synthase, chalcone isomerase (CHI), and dihydroflavonol 4-reductase interact in an orientation-dependent manner. Affinity chromatography and immunoprecipitation assays further demonstrated interactions between chalcone synthase, CHI, and flavonol 3-hydroxylase in lysates from Arabidopsis seedlings. These results support the hypothesis that the flavonoid enzymes assemble as a macromolecular complex with contacts between multiple proteins. Evidence was also found for posttranslational modification of CHI. The importance of understanding the subcellular organization of elaborate enzyme systems is discussed in the context of metabolic engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adenovirus (Ad) genome contains immunoregulatory and cytokine inhibitory genes that are presumed to function in facilitating acute infection or in establishing persistence in vivo. Some of these genes are clustered in early region 3 (E3), which contains a 19-kDa glycoprotein (gp19) that inhibits the transport of selected class I major histocompatibility complex (MHC) molecules out of the endoplasmic reticulum. In addition, the E3 region contains three protein inhibitors of the cytolytic function of tumor necrosis factor α (TNF-α). Because type I autoimmune diabetes destroys islets by mechanisms that involve class I MHC and TNF-α, we investigated whether the entire cassette of Ad E3 genes might prevent the onset of diabetes in a well studied lymphocytic choriomeningitis viral (LCMV) murine model of virus-induced autoimmune diabetes. In this model, a LCMV polypeptide (either glycoprotein or nucleoprotein) expressed as a transgene in the islets is a target for autoimmune destruction of β cells after LCMV infection. In this scenario the LCMV-induced immune response is directed not only against the virus but also against the LCMV transgenes expressed in the β cells. Our experiments demonstrated a very efficient prevention of this LCMV-triggered diabetes by the Ad E3 genes. This resulted from the inhibition of target cell recognition by a fully competent and LCMV-primed immune system. Unlike the results from the β-2 microglobulin gene deletion experiments, our approach shows that selective regulation at the level of the target cell is sufficient to prevent autoimmune diabetes without disrupting the function of the systemic immune response. Although the Ad genes in these experiments were provided as transgenes, recent experiments may permit the introduction of such genes through the use of viral vectors. Although the decrease in class I MHC in islets by Ad genes was demonstrated in these in vivo studies, the relative importance of this process and the control of TNF-α cytolysis must await further genetic dissection of the introduced Ad genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel type I transmembrane protein of COPI-coated vesicles, p23, has been demonstrated to be localized mainly to the Golgi complex. This protein and p24, another member of the p24 family, have been shown to bind coatomer via their short cytoplasmic tails. Here we demonstrate that p23 continuously cycles through the early secretory pathway. The cytoplasmic tail of p23 is shown to act as a functional retrieval signal as it confers endoplasmic reticulum (ER) residence to a CD8–p23 fusion protein. This ER localization is, at least in part, a result of retrieval from post-ER compartments because CD8–p23 fusion proteins receive post-ER modifications. In contrast, the cytoplasmic tail of p24 has been shown not to retrieve a CD8–p24 fusion protein. The coatomer binding motifs FF and KK in the cytoplasmic tail of p23 are reported to influence the steady-state localization of the CD8–p23 fusion protein within the ER–Golgi recycling pathway. It appears that the steady-state Golgi localization of endogenous p23 is maintained by its lumenal domain, as a fusion protein with the lumenal domain of CD8, and the membrane span as well as the cytoplasmic tail of p23 is no longer detected in the Golgi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although cellular proteins degraded by proteasomes are the source of most antigenic peptides presented on major histocompatibility complex class I molecules, it is unknown whether the eight- to nine-residue peptides that fit in the binding groove of class I molecules are directly produced by proteasomes alone in vivo. If the eight-residue peptide SIINFEKL from chicken ovalbumin is extended by one or several residues at its C terminus and microinjected into cells or expressed from a minigene, it is processed and presented on major histocompatibility complex class I. However, processing and presentation are inhibited by proteasome inhibitors, such as lactacystin. In contrast, when SIINFEKL is extended by 2 to 25 residues at its N terminus, its presentation is not blocked by proteasome inhibitors. N-terminal processing also can occur when the extended peptide is cotranslationally inserted into the endoplasmic reticulum. Thus, two different proteolytic steps in the generation of an chicken ovalbumin-presented peptide can be distinguished. Cleavage by the proteasome defines the proper C terminus, whereas distinct peptidase(s) in the cytosol or endoplasmic reticulum may generate the appropriate N terminus from extended peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SREBP cleavage activating protein (SCAP), a membrane-bound glycoprotein, regulates the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which are membrane-bound transcription factors that control lipid synthesis in animal cells. SCAP-stimulated proteolysis releases active fragments of SREBPs from membranes of the endoplasmic reticulum and allows them to enter the nucleus where they activate transcription. Sterols such as 25-hydroxycholesterol inactivate SCAP, suppressing SREBP proteolysis and turning off cholesterol synthesis. We here report the isolation of Chinese hamster ovary cells with a point mutation in SCAP (Y298C) that renders the protein resistant to inhibition by 25-hydroxycholesterol. Like the previously described D443N mutation, the Y298C mutation occurs within the putative sterol-sensing domain, which is part of the polytopic membrane attachment region of SCAP. Cells that express SCAP(Y298C) continued to process SREBPs in the presence of 25-hydroxycholesterol and hence they resisted killing by this sterol. In wild-type Chinese hamster ovary cells the N-linked carbohydrate chains of SCAP were mostly in the endoglycosidase H-sensitive form when cells were grown in medium containing 25-hydroxycholesterol. In contrast, when cells were grown in sterol-depleted medium, these chains were converted to an endoglycosidase H-resistant form. 25-Hydroxycholesterol had virtually no effect in cells expressing SCAP(D443N) or SCAP(Y298C). The relation between this regulated carbohydrate processing to the SCAP-regulated proteolysis of SREBP remains to be explored.