928 resultados para dry climate events
Resumo:
Antarctic bryophyte communities presently tolerate physiological extremes in water availability, surviving both desiccation and submergence events. We investigated the relative ability of three Antarctic moss species to tolerate physiological extremes in water availability and identified physiological, morphological, and biochemical characteristics that assist species performance under such conditions. Tolerance of desiccation and submergence was investigated using chlorophyll fluorescence during a series of field- and laboratory-based water stress events. Turf water retention and degree of natural habitat submergence were determined from gametophyte shoot size and density, and delta C-13 signatures, respectively. Finally, compounds likely to assist membrane structure and function during desiccation events (fatty acids and soluble carbohydrates) were determined. The results of this study show significant differences in the performance of the three study species under contrasting water stress events. The results indicate that the three study species occupy distinctly different ecological niches with respect to water relations, and provide a physiological explanation for present species distributions. The poor tolerance of submergence seen in Ceratodon purpureus helps explain its restriction to drier sites and conversely, the low tolerance of desiccation and high tolerance of submergence displayed by the endemic Grimmia antarctici is consistent with its restriction to wet habitats. Finally the flexible response observed for Bryum pseudotriquetrum is consistent with its co-occurrence with the other two species across the bryophyte habitat spectrum. The likely effects of future climate change induced shifts in water availability are discussed with respect to future community dynamics.
Resumo:
A 35 year chronology from 1965 to 2000 of the deposition of wind-blown sediment is constructed from snowpits for coastal southern Victoria Land, Antarctica. Analysis of local meteorology, contemporary eolian sedimentation, and mineralogy confirm a Victoria Valley provenance, while the presence of volcanic tephra is ascribed to an Erebus volcanic province source. Winter foelm winds associated with anticyclonic circulation are considered responsible for transporting fine-grained sediment from the snow- and ice-free Victoria Valley east toward the coast, while cyclonic storms transport tephra north along the Scott Coast. No trend could be identified in the occurrence of either tephra or wind-blown sediments sourced from the Victoria Valley and retrieved from the snowpits; excavated on the Victoria Lower and Wilson Piedmont Glaciers. We infer this to indicate that the region has not undergone a significant change in weather patterns for at least the last 35 years. Our results also confirm the McMurdo Dry Valleys as a regionally significant source of wind-blown sediment.
Resumo:
This Study examines whether cultural identity has an impact on perceptions of foreign management practices and perceptions of organisational climate. Based on social identity theory as a conceptual framework, it is assumed that the salience of cultural identity leads to in-group bias in interpreting organisational events. This study also examines whether managers' accommodative communication behaviour mediates these relationships. In a multinational organisation, employees see the foreign company as a symbol, and the person that deals with them in everyday working relationships in the organisation is their direct leader. It is argued that the salience of cultural identity wiU depend on employees' perceptions of the way managers attach meaning to foreign managerial practices and communicate it to them. Interaction with managers who create a distance with their employees and who fail to Usten to what employees need may be a socially appropriate way to invoke the salience of cultural identity in the working relationship. The participants were 206 Indonesian employees from three multinational organisations. Using a questionnaire, this study shows that participants with strong cultural identity had more negative perceptions of foreign management practices and organisational climate. Furthermore, this study indicates that managers' accommodative communication behaviour mediated these relationships.
Resumo:
Coral reefs, excellent climatic and environmental archives in tropical oceans, are widely distributed in the South China Sea (SCS), which is the largest enclosed marginal sea of western Pacific, covering over 20° in latitude and different climate conditions. Our recent research in the SCS focuses on coral-based high-resolution climate reconstruction and coral reef ecological responses using geochemical and U-series geochronological tools, which provide an ideal opportunity for understanding of Holocene climate processes and events. Some major research highlights are summarized below:
Building up resilience of construction sector SMEs and their supply chains to extreme weather events
Resumo:
Wider scientific community now accept that the threat of climate change as real and thus acknowledge the importance of implementing adaptation measures in a global context. In the UK , the physical effects of climate change are likely to be directly felt in the form of extreme weather events, which are predicted to escalate in number and severity in future under the changing climatic conditions. Construction industry; which consists of supply chains running across various other industries, economies and regions, will also be affected due to these events. Thus, it is important that the construction organisations are well prepared to withstand the effects of extreme weather events not only directly affecting their organisations but also affecting their supply chains which in turn might affect the organisation concerned. Given the fact that more than 99% of construction sector businesses are SMEs, the area can benefit significantly from policy making to improve SME resilience and coping capacity. This paper presents the literature review and synthesis of a doctoral research study undertaken to address the issue of extreme weather resilience of construction sector SMEs and their supply chains. The main contribution of the paper to both academia and practitioners is a synthesis model that conceptualises the factors that enhances resilience of SMEs and their supply chains against extreme weather events. This synthesis model forms the basis of a decision making framework that will enable SMEs to both reduce their vulnerability and enhance their coping capacity against extreme weather. The value of this paper is further extended by the overall research design that is set forth as the way forward.
Resumo:
Climate change has become one of the prime challenges the society has to face in the future. As far as businesses are concerned, it also has added one other important issue that they have to consider as part of their business planning. Climate change is of significant importance particularly to the Small and Medium-sized enterprises (SMEs), which are considered as the most vulnerable among the business community to the effects of climate change. This paper presents the findings of a literature review conducted with the aim of identifying the specific importance of climate change to the construction sector SMEs. The objectives of the paper are to identify the vulnerability of construction sector SMEs to the effects of climate change, their consequences and also to identify the importance of improving resilience and implementing adaptive measures to manage these issues. The paper also outlines the directions of a study undertaken to address these issues as part of an EPSRC funded research project titled “Community Resilience to Extreme Weather Events – CREW”. The paper concludes by stressing the importance of improving the resilience of construction sector SMEs to climate change effects and also the importance of collective action in this regard.
Resumo:
Small and Medium-scale Enterprises (SMEs), which generate more than one half of the employment (58.9%) and turnover (51.9%), form an important sector of the UK economy. Although they are the main drivers of the UK economy, they are also said to be the most vulnerable to the impacts of Extreme Weather Events (EWEs). The world in recent years has experienced a significant number of EWEs, and SMEs have suffered significant economic losses as a result. The now apparent climate change, which is mostly attributed to human interference with the environment over the past few decades, is believed to have a strong link with the increase of EWEs in the recent past. Threats of EWEs are expected to further increase due to their increased frequency and magnitude and increased vulnerability to their effects. Interestingly, EWEs seem to present businesses with various business opportunities and positive consequences as well, besides the much feared and overwhelming threats and negative consequences they present. Understanding such impacts has become a necessity to improve the resilience of SMEs so that they will be better prepared to minimise the negative consequences and maximise the positive consequences posed by EWEs. This paper attempts to bring together and evaluate the current knowledge with regard to the effects of EWEs on SMEs. The paper establishes the case for more in-depth study with this regard and concludes by stressing the need for improving the resilience of SMEs to EWEs.
Resumo:
Purpose Small and Medium-sized Enterprises (SMEs), which form a significant portion in many economies, are some of the most vulnerable to the impact of Extreme Weather Events (EWEs). This is of particular importance to the construction industry, as an overarching majority of construction companies are SMEs who account for the majority of employment and income generation within the industry. In the UK, previous research has identified construction SMEs as some of the worst affected by EWEs. Design/methodology/approach Given the recent occurrences of EWEs and predictions suggesting increases in both the intensity and frequency of EWEs in the future, improving the resilience of construction SMEs is vital for achieving a resilient construction industry. A conceptual framework is first developed which is then populated and expanded based on empirical evidence. Positioned within a pragmatic research philosophy, case study research strategy was adopted as the overall research strategy in undertaking this investigation. Findings Based on the findings of two in-depth case studies of construction SMEs, a framework was developed to represent EWE resilience of construction SMEs, where resilience was seen as a collective effect of vulnerability, coping strategies and coping capacities of SMEs, characteristics of the EWE and the wider economic climate. Originality/value The paper provides an original contribution towards the overarching agenda of the resilience of SMEs, and policy making in the area of EWE risk management by presenting a novel conceptual framework depicting the resilience of medium-sized construction companies.
Resumo:
Climate change highly impacts on tree growth and also threatens the forest of the karstic terrains. From the 1980s the frequency of decay events of the Pinus nigra Arnold forests showed a marked increase in Hungary. To understanding the vulnerability of Pinus nigra forests to climate change on shallow karstic soils in continental-sub Mediterranean climatic conditions we developed the study of three sampled population in the typical karstic landscape of Veszprém in North Transdanubia. We built our model on non-invasive approach using the annual growth of the individuals. MPI Echam5 climate model and as aridity index the Thornthwaite Agrometeorological Index were used. Our results indicate that soil thickness up to 11 cm has a major influence on the main growth intensity, however, aridity determines the annual growth rate. Our model results showed that the increasing decay frequency in the last decades was a parallel change to the decreasing growth rate of pines. The climate model predicts the similar, increased decay frequency to the presents. Our results can be valid for a wider areas of the periphery of Mediterranean climate zone while the annual-growth based model is a cost-effective and simple method to study the vitality of pine trees in a given area.
Resumo:
Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze-like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station (≤3 °C) under several warming scenarios was simulated by applying 1° incremental temperature increases to a model developed from a 42-year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 °C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.
Resumo:
Precipitation and temperature in Florida responds to climate teleconnections from both the Pacific and Atlantic regions. In this region south of Lake Okeechobee, encompassing NWS Climate Divisions 5, 6, and 7, modern movement of surface waters are managed by the South Florida Water Management District and the US Army Corps of Engineers for flood control, water supply, and Everglades restoration within the constraints of the climatic variability of precipitation and evaporation. Despite relatively narrow, low-relief, but multi-purposed land separating the Atlantic Ocean from the Gulf of Mexico, South Florida has patterns of precipitation and temperature that vary substantially on spatial scales of 101–102 km. Here we explore statistically significant linkages to precipitation and temperature that vary seasonally and over small spatial scales with El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation (PDO). Over the period from 1952 to 2005, ENSO teleconnections exhibited the strongest influence on seasonal precipitation. The Multivariate ENSO Index was positively correlated with winter (dry season) precipitation and explained up to 34 % of dry season precipitation variability along the southwest Florida coast. The AMO was the most influential of these teleconnections during the summer (wet season), with significant positive correlations to South Florida precipitation. These relationships with modern climate parameters have implications for paleoclimatological and paleoecological reconstructions, and future climate predictions from the Greater Everglades system.
Resumo:
The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr− 1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr− 1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m− 2 yr− 1 within the storm deposit compared to 151 and 168 g m− 2 yr− 1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.
Resumo:
Hydrology drives the carbon balance of wetlands by controlling the uptake and release of CO2 and CH4. Longer dry periods in between heavier precipitation events predicted for the Everglades region, may alter the stability of large carbon pools in this wetland's ecosystems. To determine the effects of drought on CO2 fluxes and CH4 emissions, we simulated changes in hydroperiod with three scenarios that differed in the onset rate of drought (gradual, intermediate, and rapid transition into drought) on 18 freshwater wetland monoliths collected from an Everglades short-hydroperiod marsh. Simulated drought, regardless of the onset rate, resulted in higher net CO2 losses net ecosystem exchange (NEE) over the 22-week manipulation. Drought caused extensive vegetation dieback, increased ecosystem respiration (Reco), and reduced carbon uptake gross ecosystem exchange (GEE). Photosynthetic potential measured by reflective indices (photochemical reflectance index, water index, normalized phaeophytinization index, and the normalized difference vegetation index) indicated that water stress limited GEE and inhibited Reco. As a result of drought-induced dieback, NEE did not offset methane production during periods of inundation. The average ratio of net CH4 to NEE over the study period was 0.06, surpassing the 100-year greenhouse warming compensation point for CH4 (0.04). Drought-induced diebacks of sawgrass (C3) led to the establishment of the invasive species torpedograss (C4) when water was resupplied. These changes in the structure and function indicate that freshwater marsh ecosystems can become a net source of CO2 and CH4 to the atmosphere, even following an extended drought. Future changes in precipitation patterns and drought occurrence/duration can change the carbon storage capacity of freshwater marshes from sinks to sources of carbon to the atmosphere. Therefore, climate change will impact the carbon storage capacity of freshwater marshes by influencing water availability and the potential for positive feedbacks on radiative forcing.
Resumo:
A semi-arid mangrove estuary system in the northeast Brazilian coast (Ceará state) was selected for this study to (i) evaluate the impact of shrimp farm nutrient-rich wastewater effluents on the soil geochemistry and organic carbon (OC) storage and (ii) estimate the total amount of OC stored in mangrove soils (0–40 cm). Wastewater-affected mangrove forests were referred to as WAM and undisturbed areas as Non-WAM. Redox conditions and OC content were statistically correlated (P < 0.05) with seasonality and type of land use (WAM vs. Non-WAM). Eh values were from anoxic to oxic conditions in the wet season (from − 5 to 68 mV in WAM and from < 40 to > 400 mV in Non-WAM soils) and significantly higher (from 66 to 411 mV) in the dry season (P < 0.01). OC contents (0–40 cm soil depth) were significantly higher (P < 0.01) in the wet season than the dry season, and higher in Non-WAM soils than in WAM soils (values of 8.1 and 6.7 kg m− 2 in the wet and dry seasons, respectively, for Non-WAM, and values of 3.8 and 2.9 kg m− 2 in the wet and dry seasons, respectively, for WAM soils; P < 0.01). Iron partitioning was significantly dependent (P < 0.05) on type of land use, with a smaller degree of pyritization and lower Fe-pyrite presence in WAM soils compared to Non-WAM soils. Basal respiration of soil sediments was significantly influenced (P < 0.01) by type of land use with highest CO2 flux rates measured in the WAM soils (mean values of 0.20 mg CO2 h− 1–g− 1 C vs. 0.04 mg CO2 h− 1–g− 1 C). The OC storage reduction in WAM soils was potentially caused (i) by an increase in microbial activity induced by loading of nutrient-rich effluents and (ii) by an increase of strong electron acceptors [e.g., NO3−] that promote a decrease in pyrite concentration and hence a reduction in soil OC burial. The current estimated OC stored in mangrove soils (0–40 cm) in the state of Ceará is approximately 1 million t.
Resumo:
The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr− 1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr− 1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m− 2 yr− 1 within the storm deposit compared to 151 and 168 g m− 2 yr− 1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.