851 resultados para dorsolateral prefrontal cortex
Resumo:
One can partially eliminate motor skills acquired through practice in the hours immediately following practice by applying repetitive transcranial stimulation (rTMS) over the primary motor cortex. The disruption of acquired levels of performance has been demonstrated on tasks that are ballistic in nature. The authors investigated whether motor recall on a discrete aiming task is degraded following a disruption of the primary motor cortex induced via rTMS. Participants (N = 16) maintained acquired performance levels and patterns of muscle activity following the application of rTMS. despite a reduction in corticospinal excitability. Disruption of the primary motor cortex during a consolidation period did not influence the retention of acquired skill in this type of discrete visuomotor task.
Resumo:
Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to test the hypothesis that M1 is intimately involved in the initial phase of sensorimotor adaptation. Inhibitory theta burst stimulation was applied to M1 prior to a task requiring modification of torques generated about the elbow/forearm complex in response to rotations of a visual feedback display. Participants were first exposed to a 30° clockwise (CW) rotation (Block A), then a 60° counterclockwise rotation (Block B), followed immediately by a second block of 30° CW rotation (A2). In the STIM condition, participants received 20s of continuous theta burst stimulation (cTBS) prior to the initial A Block. In the conventional (CON) condition, no stimulation was applied. The overt characteristics of performance in the two conditions were essentially equivalent with respect to the errors exhibited upon exposure to a new variant of the task. There were however, profound differences between the conditions in the latency of response preparation, and the excitability of corticospinal projections from M1, which accompanied phases of de-adaptation and re-adaptation (during Blocks B and A2). Upon subsequent exposure to the A rotation 24h later, the rate of re-adaptation was lower in the stimulation condition than that present in the conventional condition. These results support the assertion that primary motor cortex assumes a key role in a network that mediates adaptation to visuomotor perturbation, and emphasise that it is engaged functionally during the early phase of learning.
Resumo:
Background: Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.
Results: Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.
Conclusions: Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.
Resumo:
INTRODUCTION:
Dorsally displaced fractures of the distal radius fractures are one of the commonest in day-to-day practice. There is still no consensus among surgeons regarding the suitability of using volar or the dorsal cortex as basis for internal fixation for dorsally displaced fractures.
BACKGROUND:
We report an anatomical study, which compares the thickness of the volar and dorsal cortices of cadaveric adult radii using digital photography.
RESULTS:
Results of this study show that the volar cortex was statistically, significantly thicker than the dorsal cortex. We believe that the volar cortex may behave as the calcar of the distal radius and hence internal fixation devices applied to the volar cortex may provide a more stable internal fixation compared to those based on the dorsal cortex.
Resumo:
‘Temporally urgent’ reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.
Resumo:
Previous behavioural studies have shown that repeated presentation of a randomly chosen acoustic pattern leads to the unsupervised learning of some of its specific acoustic features. The objective of our study was to determine the neural substrate for the representation of freshly learnt acoustic patterns. Subjects first performed a behavioural task that resulted in the incidental learning of three different noise-like acoustic patterns. During subsequent high-resolution functional magnetic resonance imaging scanning, subjects were then exposed again to these three learnt patterns and to others that had not been learned. Multi-voxel pattern analysis was used to test if the learnt acoustic patterns could be 'decoded' from the patterns of activity in the auditory cortex and medial temporal lobe. We found that activity in planum temporale and the hippocampus reliably distinguished between the learnt acoustic patterns. Our results demonstrate that these structures are involved in the neural representation of specific acoustic patterns after they have been learnt.
Resumo:
The brain derived neurotrophic factor (BDNF) Val66Met polymorphism and stimulation duration are thought to play an important role in modulating motor cortex plasticity induced by non-invasive brain stimulation (NBS). In the present study we sought to determine whether these factors interact or exert independent effects in older adults. Fifty-four healthy older adults (mean age = 66.85 years) underwent two counterbalanced sessions of 1.5 mA anodal transcranial direct current stimulation (atDCS), applied over left M1 for either 10 or 20 min. Single pulse transcranial magnetic stimulation (TMS) was used to assess corticospinal excitability (CSE) before and every 5 min for 30 min following atDCS. On a group level, there was an interaction between stimulation duration and BDNF genotype, with Met carriers (n = 13) showing greater post-intervention potentiation of CSE compared to Val66Val homozygotes homozygotes (n = 37) following 20 min (p = 0.002) but not 10 min (p = 0.219) of stimulation. Moreover, Met carriers, but not Val/Val homozygotes, exhibited larger responses to TMS (p = 0.046) after 20 min atDCS, than following 10 min atDCS. On an individual level, two-step cluster analysis revealed a considerable degree of inter-individual variability, with under half of the total sample (42%) showing the expected potentiation of CSE in response to atDCS across both sessions. Intra-individual variability in response to different durations of atDCS was also apparent, with one-third of the total sample (34%) exhibiting LTP-like effects in one session but LTD-like effects in the other session. Both the inter-individual (p = 0.027) and intra-individual (p = 0.04) variability was associated with BDNF genotype. In older adults, the BDNF Val66Met polymorphism along with stimulation duration appears to play a role in modulating tDCS-induced motor cortex plasticity. The results may have implications for the design of NBS protocols for healthy and diseased aged populations.
Resumo:
Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.