990 resultados para dermatophyte fungi
Resumo:
The use of improved microbiological procedures associated with molecular techniques has increased the identification of Candida bloodstream infections, even if the isolation of more than one species by culture methods remains uncommon. We report the cases of two children presenting with severe gastrointestinal disorders and other risk factors that contribute to Candida infections. In the first patient, C. albicans DNA was initially detected by a nested-amplification and C. tropicalis was found later during hospitalization, while blood cultures were persistently negative. In the second child, there was amplification of C. albicans and C. glabrata DNA in the same samples, but blood cultures yielded only C. albicans. Both patients received antifungal therapy but had unfavorable outcomes. These two cases illustrate that PCR was more successful than culture methods in detecting Candida in the bloodstream of high risk children, and was also able to detect the presence of more than one species in the same patient that might impact therapy when the fungi are resistant to azole compounds.
Resumo:
The Canoparmelia texana epiphytic lichenized fungi was used to monitor atmospheric pollution in the Sao Paulo metropolitan region, SP, Brazil. The cluster analysis applied to the element concentration values confirmed the site groups of different levels of pollution due to industrial and vehicular emissions. In the distribution maps of element concentrations, higher concentrations of Ba and Mn were observed in the vicinity of industries and of a petrochemical complex. The highest concentration of Co found in lichens from the Sao Miguel Paulista site is due to the emissions from a metallurgical processing plant that produces this element. For Br and Zn, the highest concentrations could be associated both to vehicular and industrial emissions. Exploratory analyses revealed that the accumulation of toxic elements in C. texana may be of use in evaluating the human risk of cardiopulmonary mortality due to prolonged exposure to ambient levels of air pollution. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Background: CD8+ T cells and natural killer (NK) cells are involved in the immune response against some pathogens. For this purpose, we investigated the in situ paracoccidioidomycosis (PCM) immune response addressing the participation of NK cells, CD8+ T cells, perforin and granzyme B expression. Methods: Sixty biopsies of PCM skin and mucosa were classified according to the presence of compact granulomas (G1), poorly organized granulomas (G2) and both kinds in the same lesion (G3). CD8+ T cells, NK cells, perforin and granzyme B were showed by immunohistochemistry. Results: CD8+ T cells were increased over NK cells in cutaneous G1 and G2 lesions. There was no difference regarding such cells in G3 lesions, although they were abundant in such lesions. In mucosa, CD8+ T cells were increased in number over NK cells in all groups. Granzyme B in skin increased in G2 and G3. The number of granzyme did not differ in mucosal lesions in the three groups. Conclusions: CD8+ T cells and NK cells play a role in PCM cutaneous and mucosal lesions. The predominance of CD8+ T cells over NK cells may represent an effective response against the fungi. Moreover, the high number of granzyme B expressing cells corroborates this possibility.
Resumo:
BACKGROUND: Chromoblastomycosis is a subcutaneous mycosis that occurs mainly in rural workers although is being more commonly found among people working in other sectors. The fungus penetrates the skin after its inoculation and the most frequently isolated agent is the Fonsecaea pedrosoi. OBJECTIVES: This study aims at evaluating patients suffering from chromoblastomycosis admitted into the Department of Dermatology of the University Hospital of the Faculty of Medicine of Sao Paulo State during the ten-year period from 1997 to 2007. METHODS: It is a retrospective study and the medical report cards of 27 Brazilian patients diagnosed as suffering from Chromoblastomycosis from 1997 to 2007 at the Dermatology Department of the Medical School, University of Sao Paulo were reviewed. The following items were analyzed: previous therapeutic approaches; treatment implemented by the group; length of time between the appearing of the lesion and diagnosis; age; gender; profession; origin; site of lesions; isolated agents found in culture and histopathology. RESULTS: Twenty two patients were from the state of Sao Paulo whereas the others came from the states of Bahia and Rondonia. 37% of them were rural workers. Men were more frequently infected (85%). Lesions were more commonly found on the lower limbs (59.2%). In 52% of the cases the isolated agent was the dematiaceous fungus Fonsecaea. pedrosoi. Biopsies showed sclerotic bodies in 92.5% of the cases. CONCLUSION: Data found are in accordance with medical literature on the subject. The disease had been previously studied in our institution in 1983 by Cuce et al. This present study is the second retrospective one about the characteristics of patients suffering from chromoblastmycosis which has been published in indexed medical literature in the state of Sao Paulo.
Resumo:
Fusarium infection is known to be potentially severe in immunocompromised patients, especially those with hematologic malignancies. Mortality rates are high and there are few therapeutic options, due to the severe underlying condition of this group of patients and the relative resistance Of Fusarium to conventional antifungal therapy. Voriconazole has been shown to be an effective antifungal agent for neutropenic patients with fusariosis that are refractory or unresponsive to amphotericin B, We report the successful treatment of disseminated Fusarium infection in an immunocompromised host.
Resumo:
Infectious and parasitic diseases have always challenged man. Although many of them are typically seen in some areas of the world and can be adequately managed by just improving socioeconomic status and sanitary conditions, they are still quite prevalent and may sometimes be seen outside their original geographical areas. Human migration due to different reasons, tourism, blood transfusion and solid organ transplantation has created new concerns for health professionals all over the world. If not for diagnostic purposes, at least these tropical and infectious diseases should be largely known because their epidemiology, pathogenesis, host/parasite interaction, inflammatory and reparative responses are quite interesting and teach us about human biology. Curiosity is inherent to pathology practice and so we are compelled to look for things other than tumours or degenerative diseases. This review focuses on infectious and parasitic diseases found in a developing country and brings up-to-date information on diseases caused by viruses (dengue, yellow fever), bacteria (typhoid fever, leprosy), parasites (Chagas` disease, cutaneous and visceral leishmaniasis, amoebiasis, Capillaria hepatica, schistosomiasis, cysticercosis) and caused by fungi (paracoccidioidomycosis, cryptococcosis, histoplasmosis) that may be useful for pathologists when facing somewhat strange cases from developing countries.
Antimicrobial Activities of Ethanol Extract and Coumestans from Eclipta alba (L.) Hassk (Asteraceae)
Resumo:
Ethanol extract and fractions from aerial parts of Eclipta alba (L.) Hassk (Asteraceae) were screened for the antibacterial and antifungal activities against different species of human pathogenic bacterial ATCC, antibiotic-resistant clinical isolates and strains of the dermatophyte Trichophyton rubrum (wild and mutant for TruMDR2 gene) using a microdilution method. Demethylwedelolactone/wedelolactone (DWL/WL) and only wedelolactone (WL), both in a high homogeneity degree, were efficient to inhibit the ATCC strains of Staphylococus aureus (Minimal Inhibitory Concentration MIC = 75 mu g/mL), Staphylococcus epidemidis (MIC = 125 mu g/mL) and Escherichia coli (MIC = 125 mu g/mL) as well as antibiotic-resistant clinical isolates of Enterococcus spp (MIC = 250 mu g/mL) and S. aureus (MIC = 125 mu g/mL). Ethanol extract was more effective than the purified fractions against Trichophyton rubrum strains (MIC = 125 mu g/mL), suggesting that anti-fungal activity is not only related to demethylwedelolactone and wedelolactone, but also to a synergistic action between these coumestans and other compounds found in that extract. Thus, this work suggests that E. alba possesses a significant antimicrobial activity, including that against multi-drug resistant microorganisms, which could be of relevance for the treatment of infectious diseases.
Resumo:
Trichophyton rubrum is a dermatophyte responsible for the majority of human superficial mycoses. The functional expression of proteins important for the initial step and the maintenance of the infection process were identified previously in T. rubrum by subtraction suppression hybridization after growth in the presence of keratin. In this study, sequences similar to genes encoding the multidrug-resistance ATP-binding cassette (ABC) transporter, copper ATPase, the major facilitator superfamily and a permease were isolated, and used in Northern blots to monitor the expression of the genes, which were upregulated in the presence of keratin. A sequence identical to the TruMDR2 gene, encoding an ABC transporter in T rubrum, was isolated in these experiments, and examination of a T rubrum Delta TruMDR2 mutant showed a reduction in infecting activity, characterized by low growth on human nails compared with the wild-type strain. The high expression levels of transporter genes by T. rubrum in mimetic infection and the reduction in virulence of the Delta TruMDR2 mutant in a disease model in vitro suggest that transporters are involved in T. rubrum pathogenicity.
Resumo:
Although fungi do not cause outbreaks or pandemics, the incidence of severe systemic fungal infections has increased significantly, mainly because of the explosive growth in the number of patients with compromised immune system. Thus, drug resistance in pathogenic fungi, including dermatophytes, is gaining importance. The molecular aspects involved in the resistance of dermatophytes to marketed antifungals and other cytotoxic drugs, such as modifications of target enzymes, over-expression of genes encoding ATP-binding cassette (ABC) transporters and stress-response-related proteins are reviewed. Emphasis is placed on the mechanisms used by dermatophytes to overcome the inhibitory action of terbinafine and survival in the host environment. The relevance of identifying new molecular targets, of expanding the understanding about the molecular mechanisms of resistance and of using this information to design new drugs or to modify those that have become ineffective is also discussed.
Resumo:
Tabernaemontana catharinensis root bark ethanol extract, EB2 fraction and the MMV alkaloid (12-methoxy-4-methylvoachalotine) were evaluated for their antimicrobial activities. T. catharinensis ethanol extract was effective against both strains of the dermatophyte Trichophyton rubrum at concentrations of 2.5 mg/mL (wild strain) and 1.25 mg/mL (mutant strain), while the EB2 fraction and MMV alkaloid showed a strong antifungal activity against wild and mutant strains with MIC values of <0.02 and 0.16 mg/mL, respectively. The EB2 fraction showed a strong antibacterial activity against ATCC strains of S. aureus, S. epidermidis, E. coli and P. aeruginosa with MICs from <0.02 to 0.04 mg/mL, as well as against resistant clinical isolates species of Enterococcus sp, Klebsiella oxytoca, Citrobacter, K. pneumoniae, P. mirabilis, S. aureus, S. epidermidis, E. coli and P. aeruginosa with MIC values ranging from 0.04 to 0.08 mg/mL. The MMV alkaloid presented a MIC of 0.16 mg/mL against the strains of S. aureus and E. coli ATCC. For the resistant clinical isolates Enterococcus sp, Citrobacter, S. aureus, S. epidermidis, E. coil and P. aeruginosa the MIC of MMV ranged from 0.08 to 0.31 mg/mL. The chromatography analysis of the EB2 fraction revealed the presence of indole alkaloids, including MMV, possibly responsible for the observed antimicrobial activity.
Resumo:
PURPOSE. Fungal keratitis (FK) is a sight-threatening disease, more prevalent in developing regions. The present retrospective study was conducted in order to evaluate the epidemiologic and clinical aspects and the progression of FK in patients treated at two ophthalmologic reference centers in Southeast Brazil. METHODS. The charts of patients with infectious keratitis treated between 2000 and 2004 were reviewed. For the 66 cases of FK confirmed by microbiological analysis, data related to patient, disease, and therapeutic approaches were obtained. RESULTS. Mean patient age was 40.7 +/- 16 years. Fifty-three were men and 13 were women. Ocular trauma occurred in 40% of cases (27). Previous medications taken by the patients were quinolone in 72.5% and antimycotics in 30%. Visual acuity (VA) at presentation was >0.3 in 16% and <0.1 in 74.5%. Penetrant keratoplasty was performed in 38% and evisceration in 15%. The causing agents were Fusarium sp in 67%, Aspergillus sp in 10.5%, and Candida sp in 10%. Medication alone resolved 39% of cases within a mean period of 24.5 +/- 12 days. Final VA was >0.3 in 28%, and <0.1 in 63%. CONCLUSIONS. Fungal keratitis presented as a disease with severe complications, predominantly among young males, and was mostly caused by filamentous fungi. The present information permits the establishment of preventive strategies. Reducing the time between onset and treatment and using more accessible specific medication would reverse the negative prognosis. (Eur J Ophthalmol 2009; 19: 355-61)
Resumo:
Trichophyton rubrum is a dermatophyte that infects human skin and nails. Its growth on keratin as its carbon source shifts the ambient pH from acidic to alkaline, which may be an efficient strategy for its successful infection and maintenance in the host. In this study, we used suppression subtractive hybridization to identify genes preferentially expressed in T rubrum incubated at either pH 5.0 or pH 8.0. The functional grouping of the 341 overexpressed unigenes indicated proteins putatively involved in diverse cellular processes, such as membrane remodeling, cellular transport, metabolism, cellular protection, fungal pathogenesis, gene regulation, interaction with the environment, and iron uptake. Although the basic metabolic machinery identified under both growth conditions seems to be functionally similar, distinct genes are upregulated at acidic or alkaline pHs. We also isolated a large number of genes of unknown function, probably unique to T rubrum or dermatophytes. Interestingly, the transcriptional profiling of several genes in a pacC mutant suggests that, in T rubrum, the transcription factor PacC has a diversity of metabolic functions, in response to either acidic or alkaline ambient pH. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study was designed to compare cutaneous mycoflora isolation and CD4+:CD8+ ratio in feline immunodeficiency virus (FIV)-infected cats with that in FIV-uninfected cats. Sixty cats were examined. Twenty-five were Fly-infected cats and 35 were RV-uninfected cats. All 60 cats were FeLV-negative. Fungi were speciated and immunophenotyping of peripheral CD4+ and CD8+ T lymphocytes was performed. At least one fungal colony was isolated from 22/25 (88%) FIV-infected cats. Among the FIV-uninfected cats fungal colonies were recovered from 13/35 (37%) specimens. Dermatophytes were recovered from 2/25 (8%) FIV-infected cats (one Microsporum gypseum, one Microsporum can is) and 3/35 (8.5%) FIV-uninfected cats (M gypseum). Malassezia species was the most commonly isolated organism from both groups of cats (51.6%). Malassezia species was more commonly isolated from FIV-infected cats than RV-uninfected cats (84% vs 28.6%). The CD4+ to CD8+ lymphocyte ratio for FIV-infected cats was significantly lower than the CD4+ to CD8+ ratio in the FIV-uninfected cats. The CD4+ to CD8+ lymphocyte ratio for FIV-infected cats with cutaneous overall fungal isolation was significantly lower than the CD4:CD8 lymphocyte ratio in the FIV-infected cats but without cutaneous fungal isolation. We can conclude that immunologic depletion due to retroviral infection might represent a risk factor to cutaneous fungal colonization in cats. (C) 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Resumo:
Studies investigating the immunopathological aspects of Jorge Lobo`s disease have shown that the inflammatory infiltrate consists mainly of histiocytes and multinucleated giant cells involving numerous yeast-like cells of Lacazia loboi, with the T lymphocytes more common than B lymphocytes and plasma cells. The quantification of cytokines in peripheral blood mononuclear cells culture supernatant has revealed alterations in the cytokines profile, characterized by predominance of a Th2 profile. In view of these findings and of the role of cytokines in cell interactions, the objective of the present study was to investigate the presence of the cytokines IL-10, TGF-ss 1 and TNF-alpha, as well as iNOS enzyme in granulomas induced by L. loboi. Histological sections obtained from skin lesions of 16 patients were analyzed by immunohistochemistry for the presence of these cytokines and iNOS. The results showed that TGF-ss 1 was the cytokine most frequently expressed by cells present in the inflammatory infiltrate, followed by IL-10. There was a minimum to discrete positivity of cells expressing TNF-alpha and iNOS. The results suggest that the presence of immunosuppressive cytokines in skin lesions of patients with the mycosis might be responsible for the lack of containment of the pathogen as demonstrated by the presence of numerous fungi in the granuloma.
Resumo:
The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222-5231] that yeast AHAS can be reconstituted from its separately purified subunits. The, reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5 '-[beta,gamma -imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.