925 resultados para damping dynamic mechanical analysis DMA CFRP electrospinning tan(delta)
Resumo:
degli elementi vegetali nella dinamica e nella dispersione degli inquinanti nello street canyon urbano. In particolare, è stato analizzata la risposta fluidodinamica di cespugli con altezze diverse e di alberi con porosità e altezza del tronco varianti. Il modello analizzato consiste in due edifici di altezza e larghezza pari ad H e lunghezza di 10H, tra i quali corre una strada in cui sono stati modellizati una sorgente rappresentativa del traffico veicolare e, ai lati, due linee di componenti vegetali. Le simulazioni sono state fatte con ANSYS Fluent, un software di "Computational Fluid Dynamics"(CFD) che ha permesso di modellizare la dinamica dei flussi e di simulare le concentrazioni emesse dalla sorgente di CO posta lungo la strada. Per la simulazione è stato impiegato un modello RANS a chiusura k-epsilon, che permette di parametrizzare i momenti secondi nell'equazione di Navier Stokes per permettere una loro più facile risoluzione. I risultati sono stati espressi in termini di profili di velocità e concentrazione molare di CO, unitamente al calcolo della exchange velocity per quantificare gli scambi tra lo street canyon e l'esterno. Per quanto riguarda l'influenza dell'altezza dei tronchi è stata riscontrata una tendenza non lineare tra di essi e la exchange velocity. Analizzando invece la altezza dei cespugli è stato visto che all'aumentare della loro altezza esiste una relazione univoca con l'abbassamento della exchange velocity. Infine, andando a variare la permeabilità delle chiome degli alberi è stata trovatta una variazione non monotonica che correla la exchange velocity con il parametro C_2, che è stata interpretata attraverso i diversi andamenti dei profili sopravento e sottovento. In conclusione, allo stadio attuale della ricerca presentata in questa tesi, non è ancora possibile correlare direttamente la exchange velocity con alcun parametro analizzato.
Resumo:
Accounting for around 40% of the total final energy consumption, the building stock is an important area of focus on the way to reaching the energy goals set for the European Union. The relatively small share of new buildings makes renovation of existing buildings possibly the most feasible way of improving the overall energy performance of the building stock. This of course involves improvements on the climate shell, for example by additional insulation or change of window glazing, but also installation of new heating systems, to increase the energy efficiency and to fit the new heat load after renovation. In the choice of systems for heating, ventilation and air conditioning (HVAC), it is important to consider their performance for space heating as well as for domestic hot water (DHW), especially for a renovated house where the DHW share of the total heating consumption is larger. The present study treats the retrofitting of a generic single family house, which was defined as a reference building in a European energy renovation project. Three HVAC retrofitting options were compared from a techno-economic point of view: A) Air-to-water heat pump (AWHP) and mechanical ventilation with heat recovery (MVHR), B) Exhaust air heat pump (EAHP) with low-temperature ventilation radiators, and C) Gas boiler and ventilation with MVHR. The systems were simulated for houses with two levels of heating demand and four different locations: Stockholm, Gdansk, Stuttgart and London. They were then evaluated by means of life cycle cost (LCC) and primary energy consumption. Dynamic simulations were done in TRNSYS 17. In most cases, system C with gas boiler and MVHR was found to be the cheapest retrofitting option from a life cycle perspective. The advantage over the heat pump systems was particularly clear for a house in Germany, due to the large discrepancy between national prices of natural gas and electricity. In Sweden, where the price difference is much smaller, the heat pump systems had almost as low or even lower life cycle costs than the gas boiler system. Considering the limited availability of natural gas in Sweden, systems A and B would be the better options. From a primary energy point of view system A was the best option throughout, while system B often had the highest primary energy consumption. The limited capacity of the EAHP forced it to use more auxiliary heating than the other systems did, which lowered its COP. The AWHP managed the DHW load better due to a higher capacity, but had a lower COP than the EAHP in space heating mode. Systems A and C were notably favoured by the air heat recovery, which significantly reduced the heating demand. It was also seen that the DHW share of the total heating consumption was, as expected, larger for the house with the lower space heating demand. This confirms the supposition that it is important to include DHW in the study of HVAC systems for retrofitting.
Resumo:
The strategic orientations of a firm are considered crucial for enhancing firm performance and their impact can be even greater when associated with dynamic capabilities, particularly in complex and dynamic environments. This study empirically analyzes the relationship between market, entrepreneurial and learning orientations, dynamic capabilities, and performance using an integrative approach hitherto little explored. Using a sample of 209 knowledge intensive business service firms, this paper applies structural equation modeling to explore both direct effects of strategic orientations and the mediating role of dynamic capabilities on performance. The study demonstrates that learning orientation and one of the dimensions of entrepreneurial orientation have a direct positive effect on performance. On the other hand, dynamic capabilities mediate the relationships between some of the strategic orientations and firm performance. Overall, when dynamic capabilities are combined with the appropriate strategic orientations, they enhance firm performance. This paper contributes to a better understanding of the knowledge economy, given the important role knowledge intensive business services play in such a dynamic and pivotal sector.
Resumo:
The use of adhesively bonded carbon fiber reinforced polymers (CFRP) is well established to repair metallic structural elements in the aerospace industry for more than three decades. Despite a few exceptions, this technology has yet not been exploited for the steel construction industry where there is a great need to rehabilitate old metallic bridges. For instance, in Europe more than 30% of the railway bridge stock operated for more than 100 years. These bridges are made of old mild steel or puddle iron that exhibits poor behaviour due to the quality of the material itself and degradation caused by the long-term loading or environmental effects. The modest results for Steel/CFRP joints obtained may be due to the type of adhesive used. In fact, most of the previous studies utilized brittle adhesives specially developed for concrete structures. Recent ductile adhesives that made for the automotive industry for metallic joints should be more appropriate. In this study, an experimental investigation on the behaviour of CFRP/steel adhesively bonded joints is presented. A comparison between brittle adhesives and ductile adhesives is conducted. The results show that the ductile adhesives achieve much higher performance than the brittle ones. The brittle adhesives provide more stiffness to the adhesive joint. In the specimens with the ductile adhesives, the failure pattern started by yielding the steel bars first then the adhesive joint which is promising since it can facilitate the design significantly if the steel yielding can be used as a design criterion. The main disadvantage of ductile adhesives is they are usually more expensive than brittle ones. In order to solve this issue, bi-adhesive joints, in which the joint is mainly made of (low cost) brittle adhesive and ductile adhesive in the stress concentration region, are proposed. The results revealed very high improvement up to the yielding strength of the steel bars and with a balanced stiffness.
Root cause analysis applied to a finite element model's refinement of a negative stiffness structure
Resumo:
Negative Stiffness Structures are mechanical systems that require a decrease in the applied force to generate an increase in displacement. They are structures that possess special characteristics such as snap-through and bi-stability. All of these features make them particularly suitable for different applications, such as shock-absorption, vibration isolation and damping. From this point of view, they have risen awareness of their characteristics and, in order to match them to the application needed, a numerical simulation is of great interest. In this regard, this thesis is a continuation of previous studies in a circular negative stiffness structure and aims at refine the numerical model by presenting a new solution. To that end, an investigation procedure is needed. Amongst all of the methods available, root cause analysis was the chosen one to perform the investigation since it provides a clear view of the problem under analysis and a categorization of all the causes behind it. As a result of the cause-effect analysis, the main causes that have influence on the numerical results were obtained. Once all of the causes were listed, solutions to them were proposed and it led to a new numerical model. The numerical model proposed was of nonlinear type of analysis with hexagonal elements and a hyperelastic material model. The results were analyzed through force-displacement curves, allowing for the visualization of the structure’s energy recovery. When compared to the results obtained from the experimental part, it is evident that the trend is similar and the negative stiffness behaviour is present.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
Conventional tilted implants are used in oral rehabilitation for heavily absorbed maxilla to avoid bone grafts; however, few research studies evaluate the biomechanical behavior when different angulations of the implants are used. The aim of this study was evaluate, trough photoelastic method, two different angulations and length of the cantilever in fixed implant-supported maxillary complete dentures. Two groups were evaluated: G15 (distal tilted implants 15°) and G35 (distal tilted implants 35°) n = 6. For each model, 2 distal tilted implants (3.5 x 15 mm long cylindrical cone) and 2 parallel tilted implants in the anterior region (3.5 x 10 mm) were installed. Photoelastic models were submitted to three vertical load tests: in the end of cantilever, in the last pillar and in the all pillars at the same time. We obtained the shear stress by Fringes software and found values for total, cervical and apical stress. The quantitative analysis was performed using the Student tests and Mann-Whitney test; p ≥ 0.05. There is no difference between G15 and G35 for total stress regardless of load type. Analyzing the apical region, G35 reduced strain values considering the distal loads (in the cantilever p = 0.03 and in the last pillar p = 0.02), without increasing the stress level in the cervical region. Considering the load in all pillars, G35 showed higher stress concentration in the cervical region (p = 0.04). For distal loads, G15 showed increase of tension in the apical region, while for load in all pillars, G35 inclination increases stress values in the cervical region.
Resumo:
To perform a comparative evaluation of the mechanical resistance of simulated fractures of the mandibular body which were repaired using different fixation techniques with two different brands of 2.0 mm locking fixation systems. Four aluminum hemimandibles with linear sectioning simulating a mandibular body fracture were used as the substrates and were fixed using the two techniques and two different brands of fixation plate. These were divided into four groups: groups I and II were fixed with one four-hole plate, with four 6 mm screws in the tension zone and one four-hole plate, with four 10 mm screws in the compression zone; and groups III and IV were fixed with one four-hole plate with four 6 mm screws in the neutral zone. Fixation plates manufactured by Tóride were used for groups I and III, and by Traumec for groups II and IV. The hemimandibles were submitted to vertical, linear load testing in an Instron 4411 servohydraulic mechanical testing unit, and the load/displacement (3 mm, 5 mm and 7 mm) and the peak loads were measured. Means and standard deviations were evaluated applying variance analysis with a significance level of 5%. The only significant difference between the brands was seen at displacements of 7 mm. Comparing the techniques, groups I and II showed higher mechanical strength than groups III and IV, as expected. For the treatment of mandibular linear body fracture, two locking plates, one in the tension zone and another in the compression zone, have a greater mechanical strength than a single locking plate in the neutral zone.
Resumo:
Maxillofacial trauma resulting from falls in elderly patients is a major social and health care concern. Most of these traumatic events involve mandibular fractures. The aim of this study was to analyze stress distributions from traumatic loads applied on the symphyseal, parasymphyseal, and mandibular body regions in the elderly edentulous mandible using finite-element analysis (FEA). Computerized tomographic analysis of an edentulous macerated human mandible of a patient approximately 65 years old was performed. The bone structure was converted into a 3-dimensional stereolithographic model, which was used to construct the computer-aided design (CAD) geometry for FEA. The mechanical properties of cortical and cancellous bone were characterized as isotropic and elastic structures, respectively, in the CAD model. The condyles were constrained to prevent free movement in the x-, y-, and z-axes during simulation. This enabled the simulation to include the presence of masticatory muscles during trauma. Three different simulations were performed. Loads of 700 N were applied perpendicular to the surface of the cortical bone in the symphyseal, parasymphyseal, and mandibular body regions. The simulation results were evaluated according to equivalent von Mises stress distributions. Traumatic load at the symphyseal region generated low stress levels in the mental region and high stress levels in the mandibular neck. Traumatic load at the parasymphyseal region concentrated the resulting stress close to the mental foramen. Traumatic load in the mandibular body generated extensive stress in the mandibular body, angle, and ramus. FEA enabled precise mapping of the stress distribution in a human elderly edentulous mandible (neck and mandibular angle) in response to 3 different traumatic load conditions. This knowledge can help guide emergency responders as they evaluate patients after a traumatic event.
Resumo:
A base-cutter represented for a mechanism of four bars, was developed using the Autocad program. The normal force of reaction of the profile in the contact point was determined through the dynamic analysis. The equations of dynamic balance were based on the laws of Newton-Euler. The linkage was subject to an optimization technique that considered the peak value of soil reaction force as the objective function to be minimized while the link lengths and the spring constant varied through a specified range. The Algorithm of Sequential Quadratic Programming-SQP was implemented of the program computational Matlab. Results were very encouraging; the maximum value of the normal reaction force was reduced from 4,250.33 to 237.13 N, making the floating process much less disturbing to the soil and the sugarcane rate. Later, others variables had been incorporated the mechanism optimized and new otimization process was implemented .
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
O objetivo deste trabalho foi o estudo do efeito do Grau de Hidrólise (GH) do poli(vinil álcool) (PVA) nas propriedades dos filmes à base de blendas de gelatina suína e PVA com dois GH. Os filmes foram produzidos com soluções com 2 g de macromoléculas/100 g de solução, contendo 23,1 g de PVA.100 g-1 de macromoléculas e 25 g de glicerol/100 g de macromoléculas. As propriedades mecânicas e térmicas, cor, opacidade, umidade e solubilidade, além de espectros de infravermelho com transformada de Fourier (FTIR) dos filmes, foram estudadas. As soluções foram analisadas por reometria dinâmica. Os filmes produzidos com o PVA de menor GH foram mais higroscópicos e mais solúveis. Mas o tipo de PVA não afetou a cor, afetando a opacidade e o brilho dos filmes. O PVA com maior GH proporcionou filmes mais resistentes, e o PVA de menor GH produziu filmes mais resistentes à tração, embora menos deformáveis na perfuração. O GH do PVA não afetou a temperatura de transição vítrea dos filmes, determinada na primeira varredura, mas a afetou na segunda varredura. Os resultados das análises de FTIR corroborraram com esses resultados. As propriedades viscoelásticas das soluções não foram afetadas pelo GH do PVA, muito possivelmente por se tratar de soluções diluídas.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady - shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5 - 35ºC. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G' and G" moduli than the variation in temperature.
Resumo:
Sediment cores are an essential tool for the analysis of the dynamics of mangrove succession. Coring was used to correlate changes in depositional environments and lateral sedimentary facies with discrete stages of forest succession at the Cananéia-Iguape Coastal System in southeastern Brazil. A local level successional pattern was examined based on four core series T1) a sediment bank; T2) a smooth cordgrass Spartina alterniflora bank; T3) an active mangrove progradation fringe dominated by Laguncularia racemosa, and; T4) a mature mangrove forest dominated by Avicennia schaueriana. Cores were macroscopically described in terms of color, texture, sedimentary structure and organic components. The base of all cores exhibited a similar pattern suggesting common vertical progressive changes in depositional conditions and subsequent successional colonization pattern throughout the forest. The progradation zone is an exposed bank, colonized by S. alterniflora. L. racemosa, replaces S. alterniflora as progradation takes place. As the substrate consolidates A. schaueriana replaces L. racemosa and attains the greatest structural development in the mature forest. Cores collected within the A. schaueriana dominated stand contained S. alterniflora fragments near the base, confirming that a smooth cordgrass habitat characterized the establishment and early seral stages. Cores provide a reliable approach to describe local-level successional sequences in dynamic settings subject to drivers operating on multiple temporal and spatial scales where spatial heterogeneity can lead to multiple equilibria and where similar successional end-points may be reached through convergent paths.
Resumo:
This work presents a fully non-linear finite element formulation for shell analysis comprising linear strain variation along the thickness of the shell and geometrically exact description for curved triangular elements. The developed formulation assumes positions and generalized unconstrained vectors as the variables of the problem, not displacements and finite rotations. The full 3D Saint-Venant-Kirchhoff constitutive relation is adopted and, to avoid locking, the rate of thickness variation enhancement is introduced. As a consequence, the second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive the specific strain energy potential. Curved triangular elements with cubic approximation are adopted using simple notation. Selected numerical simulations illustrate and confirm the objectivity, accuracy, path independence and applicability of the proposed technique.