973 resultados para cost prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of an optimal feedback law is established for the risk-sensitive optimal control problem with denumerable state space. The main assumptions imposed are irreducibility and a near monotonicity condition on the one-step cost function. A solution can be found constructively using either value iteration or policy iteration under suitable conditions on initial feedback law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal lung and liver tissues were examined by ultrasound in 240 subjects during 24 to 38 weeks of gestational age in order to investigate the feasibility of predicting the maturity of the lung from the textural features of sonograms. A region of interest of 64 X 64 pixels is used for extracting textural features. Since the histological properties of the liver are claimed to remain constant with respect to gestational age, features obtained from the lung region are compared with those from liver. Though the mean values of some of the features show a specific trend with respect to gestation age, the variance is too high to guarantee definite prediction of the gestational age. Thus, we restricted our purview to an investigation into the feasibility of fetal lung maturity prediction using statistical textural features. Out of 64 features extracted, those features that are correlated with gestation age and less computationally intensive are selected. The results of our study show that the sonographic features hold some promise in determining whether the fetal lung is mature or immature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of rainfed crops in semi-arid tropics exhibits large variation in response to the variation in seasonal rainfall. There are several farm-level decisions such as the choice of cropping pattern, whether to invest in fertilizers, pesticides etc., the choice of the period for planting, plant population density etc. for which the appropriate choice (associated with maximum production or minimum risk) depends upon the nature of the rainfall variability or the prediction for a specific year. In this paper, we have addressed the problem of identifying the appropriate strategies for cultivation of rainfed groundnut in the Anantapur region in a semi-arid part of the Indian peninsula. The approach developed involves participatory research with active collaboration with farmers, so that the problems with perceived need are addressed with the modern tools and data sets available. Given the large spatial variation of climate and soil, the appropriate strategies are necessarily location specific. With the approach adopted, it is possible to tap the detailed location specific knowledge of the complex rainfed ecosystem and gain an insight into the variety of options of land use and management practices available to each category of stakeholders. We believe such a participatory approach is essential for identifying strategies that have a favourable cost-benefit ratio over the region considered and hence are associated with a high chance of acceptance by the stakeholders. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of Artificial Neural Networks for predicting the stress-strain response of jointed rocks at varied confining pressures, strength properties and joint properties (frequency, orientation and strength of joints) has been studied in the present paper. The database is formed from the triaxial compression tests on different jointed rocks with different confining pressures and different joint properties reported by various researchers. This input data covers a wide range of rock strengths, varying from very soft to very hard. The network was trained using a 3 layered network with feed forward back propagation algorithm. About 85% of the data was used for training and remaining15% for testing the predicting capabilities of the network. Results from the analyses were very encouraging and demonstrated that the neural network approach is efficient in capturing the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different rocks, whose intact strength vary from 11.32 MPa to 123 MPa and spacing of joints vary from 10 cm to 100 cm for confining pressures ranging from 0 to 13.8 MPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many shallow landslides are triggered by heavy rainfall on hill slopes resulting in enormous casualties and huge economic losses in mountainous regions. Hill slope failure usually occurs as soil resistance deteriorates in the presence of the acting stress developed due to a number of reasons such as increased soil moisture content, change in land use causing slope instability, etc. Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration and information related to land surface susceptibility. Terrain analysis applications using spatial data such as aspect, slope, flow direction, compound topographic index, etc. along with information derived from remotely sensed data such as land cover / land use maps permit us to quantify and characterise the physical processes governing the landslide occurrence phenomenon. In this work, the probable landslide prone areas are predicted using two different algorithms – GARP (Genetic Algorithm for Rule-set Prediction) and Support Vector Machine (SVM) in a free and open source software package - openModeller. Several environmental layers such as aspect, digital elevation data, flow accumulation, flow direction, slope, land cover, compound topographic index, and precipitation data were used in modelling. A comparison of the simulated outputs, validated by overlaying the actual landslide occurrence points showed 92% accuracy with GARP and 96% accuracy with SVM in predicting landslide prone areas considering precipitation in the wettest month whereas 91% and 94% accuracy were obtained from GARP and SVM considering precipitation in the wettest quarter of the year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address the reconstruction problem from laterally truncated helical cone-beam projections. The reconstruction problem from lateral truncation, though similar to that of interior radon problem, is slightly different from it as well as the local (lambda) tomography and pseudo-local tomography in the sense that we aim to reconstruct the entire object being scanned from a region-of-interest (ROI) scan data. The method proposed in this paper is a projection data completion approach followed by the use of any standard accurate FBP type reconstruction algorithm. In particular, we explore a windowed linear prediction (WLP) approach for data completion and compare the quality of reconstruction with the linear prediction (LP) technique proposed earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced system-on-package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties. Realization of embedded resistors on low loss benzocyclobutene (dielectric loss ~0.0008 at > 40 GHz) has been explored in this study. Two approaches, viz, foil transfer and electroless plating have been attempted for deposition of thin film resistors on benzocyclobutene (BCB). Ni-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. This paper reports NiP and NiWP electroless plated embedded resistors on BCB dielectric for the first time in the literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing and optimizing high performance microprocessors is an increasingly difficult task due to the size and complexity of the processor design space, high cost of detailed simulation and several constraints that a processor design must satisfy. In this paper, we propose the use of empirical non-linear modeling techniques to assist processor architects in making design decisions and resolving complex trade-offs. We propose a procedure for building accurate non-linear models that consists of the following steps: (i) selection of a small set of representative design points spread across processor design space using latin hypercube sampling, (ii) obtaining performance measures at the selected design points using detailed simulation, (iii) building non-linear models for performance using the function approximation capabilities of radial basis function networks, and (iv) validating the models using an independently and randomly generated set of design points. We evaluate our model building procedure by constructing non-linear performance models for programs from the SPEC CPU2000 benchmark suite with a microarchitectural design space that consists of 9 key parameters. Our results show that the models, built using a relatively small number of simulations, achieve high prediction accuracy (only 2.8% error in CPI estimates on average) across a large processor design space. Our models can potentially replace detailed simulation for common tasks such as the analysis of key microarchitectural trends or searches for optimal processor design points.