803 resultados para correlation-based feature selection
Resumo:
Nearest feature line-based subspace analysis is first proposed in this paper. Compared with conventional methods, the newly proposed one brings better generalization performance and incremental analysis. The projection point and feature line distance are expressed as a function of a subspace, which is obtained by minimizing the mean square feature line distance. Moreover, by adopting stochastic approximation rule to minimize the objective function in a gradient manner, the new method can be performed in an incremental mode, which makes it working well upon future data. Experimental results on the FERET face database and the UCI satellite image database demonstrate the effectiveness.
Resumo:
An array of different structural probes has been used to define the effect of adding Zn and Ti to a sodium-calcium phosphate glass. X-ray absorption spectroscopy at the Zn K-edge suggests that the Zn atoms occupy mixed (4- and 6-fold) sites within the glass matrix. X-ray diffraction reveals a feature at 2.03 angstrom that develops with the addition of Zn and Ti and is consistent with Zn-O and Ti-O near-neighbour distances. Neutron diffraction is used to resolve two distinct P-O distances and highlights the decrease in P center dot center dot center dot P coordination number from 2.0 to 1.7 as the Ti metal concentration rises, which is attributed to the O/P fraction moving away from the metaphosphate value of 3.0 to 3.1 with the addition of Ti. Other correlations, such as those associated with CaO(x) and NaO(x) polyhedra, remain largely unaffected. These results suggest that the network forming P center dot center dot center dot P correlation is most disrupted, with the disorder parameter rising from 0.07 to 0.10 angstrom with the additional modifiers. Zn appears to be introduced into the network as a direct replacement for Ca and causes no structural variation over the composition range studied.
Resumo:
This article examines whether UK portfolio returns are time varying so that expected returns follow an AR(1) process as proposed by Conrad and Kaul for the USA. It explores this hypothesis for four portfolios that have been formed on the basis of market capitalization. The portfolio returns are modelled using a kalman filter signal extraction model in which the unobservable expected return is the state variable and is allowed to evolve as a stationary first order autoregressive process. It finds that this model is a good representation of returns and can account for most of the autocorrelation present in observed portfolio returns. This study concludes that UK portfolio returns are time varying and the nature of the time variation appears to introduce a substantial amount of autocorrelation to portfolio returns. Like Conrad and Kaul if finds a link between the extent to which portfolio returns are time varying and the size of firms within a portfolio but not the monotonic one found for the USA. © 2004 Taylor and Francis Ltd.
Resumo:
In this paper, we present syllable-based duration modelling in the context of a prosody model for Standard Yorùbá (SY) text-to-speech (TTS) synthesis applications. Our prosody model is conceptualised around a modular holistic framework. This framework is implemented using the Relational Tree (R-Tree) techniques. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration, intonation, and intensity, using different techniques and their subsequent integration. We applied the Fuzzy Decision Tree (FDT) technique to model the duration dimension. In order to evaluate the effectiveness of FDT in duration modelling, we have also developed a Classification And Regression Tree (CART) based duration model using the same speech data. Each of these models was integrated into our R-Tree based prosody model. We performed both quantitative (i.e. Root Mean Square Error (RMSE) and Correlation (Corr)) and qualitative (i.e. intelligibility and naturalness) evaluations on the two duration models. The results show that CART models the training data more accurately than FDT. The FDT model, however, shows a better ability to extrapolate from the training data since it achieved a better accuracy for the test data set. Our qualitative evaluation results show that our FDT model produces synthesised speech that is perceived to be more natural than our CART model. In addition, we also observed that the expressiveness of FDT is much better than that of CART. That is because the representation in FDT is not restricted to a set of piece-wise or discrete constant approximation. We, therefore, conclude that the FDT approach is a practical approach for duration modelling in SY TTS applications. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The existing method of pipeline monitoring, which requires an entire pipeline to be inspected periodically, wastes time and is expensive. A risk-based model that reduces the amount of time spent on inspection has been developed. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction method and logical insurance plans.The risk-based model uses analytic hierarchy process, a multiple attribute decision-making technique, to identify factors that influence failure on specific segments and analyze their effects by determining the probabilities of risk factors. The severity of failure is determined through consequence analysis, which establishes the effect of a failure in terms of cost caused by each risk factor and determines the cumulative effect of failure through probability analysis.
Resumo:
Design of casting entails the knowledge of various interacting factors that are unique to casting process, and, quite often, product designers do not have the required foundry-specific knowledge. Casting designers normally have to liaise with casting experts in order to ensure the product designed is castable and the optimum casting method is selected. This two-way communication results in long design lead times, and lack of it can easily lead to incorrect casting design. A computer-based system at the discretion of a design engineer can, however, alleviate this problem and enhance the prospect of casting design for manufacture. This paper proposes a knowledge-based expert system approach to assist casting product designers in selecting the most suitable casting process for specified casting design requirements, during the design phase of product manufacture. A prototype expert system has been developed, based on production rules knowledge representation technique. The proposed system consists of a number of autonomous but interconnected levels, each dealing with a specific group of factors, namely, casting alloy, shape and complexity parameters, accuracy requirements and comparative costs, based on production quantity. The user interface has been so designed to allow the user to have a clear view of how casting design parameters affect the selection of various casting processes at each level; if necessary, the appropriate design changes can be made to facilitate the castability of the product being designed, or to suit the design to a preferred casting method.
Resumo:
Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.
Resumo:
This thesis objective is to discover “How are informal decisions reached by screeners when filtering out undesirable job applications?” Grounded theory techniques were employed in the field to observe and analyse informal decisions at the source by screeners in three distinct empirical studies. Whilst grounded theory provided the method for case and cross-case analysis, literature from academic and non-academic sources was evaluated and integrated to strengthen this research and create a foundation for understanding informal decisions. As informal decisions in early hiring processes have been under researched, this thesis contributes to current knowledge in several ways. First, it locates the Cycle of Employment which enhances Robertson and Smith’s (1993) Selection Paradigm through the integration of stages that individuals occupy whilst seeking employment. Secondly, a general depiction of the Workflow of General Hiring Processes provides a template for practitioners to map and further develop their organisational processes. Finally, it highlights the emergence of the Locality Effect, which is a geographically driven heuristic and bias that can significantly impact recruitment and informal decisions. Although screeners make informal decisions using multiple variables, informal decisions are made in stages as evidence in the Cycle of Employment. Moreover, informal decisions can be erroneous as a result of a majority and minority influence, the weighting of information, the injection of inappropriate information and criteria, and the influence of an assessor. This thesis considers these faults and develops a basic framework of understanding informal decisions to which future research can be launched.
Resumo:
We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis.
Resumo:
Since the seminal works of Markowitz (1952), Sharpe (1964), and Lintner (1965), numerous studies on portfolio selection and performance measure have been based upon the mean-variance framework. However, several researchers (e.g., Arditti (1967, and 1971), Samuelson (1970), and Rubinstein (1973)) argue that the higher moments cannot be neglected unless there is reason to believe that: (i) the asset returns are normally distributed and the investor's utility function is quadratic, or (ii) the empirical evidence demonstrates that higher moments are irrelevant to the investor's decision. Based on the same argument, this dissertation investigates the impact of higher moments of return distributions on three issues concerning the 14 international stock markets.^ First, the portfolio selection with skewness is determined using: the Polynomial Goal Programming in which investor preferences for skewness can be incorporated. The empirical findings suggest that the return distributions of international stock markets are not normally distributed, and that the incorporation of skewness into an investor's portfolio decision causes a major change in the construction of his optimal portfolio. The evidence also indicates that an investor will trade expected return of the portfolio for skewness. Moreover, when short sales are allowed, investors are better off as they attain higher expected return and skewness simultaneously.^ Second, the performance of international stock markets are evaluated using two types of performance measures: (i) the two-moment performance measures of Sharpe (1966), and Treynor (1965), and (ii) the higher-moment performance measures of Prakash and Bear (1986), and Stephens and Proffitt (1991). The empirical evidence indicates that higher moments of return distributions are significant and relevant to the investor's decision. Thus, the higher moment performance measures should be more appropriate to evaluate the performances of international stock markets. The evidence also indicates that various measures provide a vastly different performance ranking of the markets, albeit in the same direction.^ Finally, the inter-temporal stability of the international stock markets is investigated using the Parhizgari and Prakash (1989) algorithm for the Sen and Puri (1968) test which accounts for non-normality of return distributions. The empirical finding indicates that there is strong evidence to support the stability in international stock market movements. However, when the Anderson test which assumes normality of return distributions is employed, the stability in the correlation structure is rejected. This suggests that the non-normality of the return distribution is an important factor that cannot be ignored in the investigation of inter-temporal stability of international stock markets. ^
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
In longitudinal data analysis, our primary interest is in the regression parameters for the marginal expectations of the longitudinal responses; the longitudinal correlation parameters are of secondary interest. The joint likelihood function for longitudinal data is challenging, particularly for correlated discrete outcome data. Marginal modeling approaches such as generalized estimating equations (GEEs) have received much attention in the context of longitudinal regression. These methods are based on the estimates of the first two moments of the data and the working correlation structure. The confidence regions and hypothesis tests are based on the asymptotic normality. The methods are sensitive to misspecification of the variance function and the working correlation structure. Because of such misspecifications, the estimates can be inefficient and inconsistent, and inference may give incorrect results. To overcome this problem, we propose an empirical likelihood (EL) procedure based on a set of estimating equations for the parameter of interest and discuss its characteristics and asymptotic properties. We also provide an algorithm based on EL principles for the estimation of the regression parameters and the construction of a confidence region for the parameter of interest. We extend our approach to variable selection for highdimensional longitudinal data with many covariates. In this situation it is necessary to identify a submodel that adequately represents the data. Including redundant variables may impact the model’s accuracy and efficiency for inference. We propose a penalized empirical likelihood (PEL) variable selection based on GEEs; the variable selection and the estimation of the coefficients are carried out simultaneously. We discuss its characteristics and asymptotic properties, and present an algorithm for optimizing PEL. Simulation studies show that when the model assumptions are correct, our method performs as well as existing methods, and when the model is misspecified, it has clear advantages. We have applied the method to two case examples.
Resumo:
The principal aim of this paper is to examine the criteria assisting in the selection of biomass for energy generation in Brazil. To reach the aim, this paper adopts case study and survey research methods to collect information from four biomass energy case companies and solicits opinions from experts. The data gathered are analysed in line with a wide range of related data, including selection criteria for biomass and its importance, energy policies in Brazil, availability of biomass feedstock in Brazil and its characteristics, as well as status quo of biomass-based energy in Brazil. The findings of the paper demonstrate that there are ten main criteria in biomass selection for energy generation in Brazil. They comprise geographical conditions, availability of biomass feedstock, demand satisfaction, feedstock costs and oil prices, energy content of biomass feedstock, business and economic growth, CO2 emissions of biomass end-products, effects on soil, water and biodiversity, job creation and local community support, as well as conversion technologies. Furthermore, the research also found that these main criteria cannot be grouped on the basis of sustainability criteria, nor ranked by their importance as there is correlation between each criterion such as a cause and effect relationship, as well as some overlapping areas. Consequently, this means that when selecting biomass more comprehensive consideration is advisable.
Resumo:
Pre-treatment HCV quasispecies complexity and diversity may predict response to interferon based anti-viral therapy. The objective of this study was to retrospectively (1) examine temporal changes in quasispecies prior to the start of therapy and (2) investigate extensively quasispecies evolution in a group of 10 chronically infected patients with genotype 3a, treated with pegylated alpha 2a-Interferon and ribavirin. The degree of sequence heterogeneity within the hypervariable region 1 was assessed by analyzing 20-30 individual clones in serial serum samples. Genetic parameters, including amino acid Shannon entropy, Hamming distance and genetic distance were calculated for each sample. Treatment outcome was divided into (1) sustained virological responders (SVR) and (2) treatment failure (TF).Our results indicate, (1) quasispecies complexity and diversity are lower in the SVR group, (2) quasispecies vary temporally and (3) genetic heterogeneity at baseline can be used to predict treatment outcome. We discuss the results from the perspective of replicative homeostasis. We discuss the results from the perspective of replicative homeostasis.
Resumo:
Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document micro-evolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here we show, using a quantitative genetic framework and six decades of life-history data on two free-living populations of great tits Parus major, that selection estimates for egg-laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson-Price Identity were similar to those based on the multivariate breeder’s equation, indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments.