954 resultados para computer algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide an algorithm that achieves the optimal regret rate in an unknown weakly communicating Markov Decision Process (MDP). The algorithm proceeds in episodes where, in each episode, it picks a policy using regularization based on the span of the optimal bias vector. For an MDP with S states and A actions whose optimal bias vector has span bounded by H, we show a regret bound of ~ O(HS p AT ). We also relate the span to various diameter-like quantities associated with the MDP, demonstrating how our results improve on previous regret bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of timelines of computer activity is a part of many digital investigations. These timelines of events are composed of traces of historical activity drawn from system logs and potentially from evidence of events found in the computer file system. A potential problem with the use of such information is that some of it may be inconsistent and contradictory thus compromising its value. This work introduces a software tool (CAT Detect) for the detection of inconsistency within timelines of computer activity. We examine the impact of deliberate tampering through experiments conducted with our prototype software tool. Based on the results of these experiments, we discuss techniques which can be employed to deal with such temporal inconsistencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delays are an important feature in temporal models of genetic regulation due to slow biochemical processes, such as transcription and translation. In this paper, we show how to model intrinsic noise effects in a delayed setting by either using a delay stochastic simulation algorithm (DSSA) or, for larger and more complex systems, a generalized Binomial τ-leap method (Bτ-DSSA). As a particular application, we apply these ideas to modeling somite segmentation in zebra fish across a number of cells in which two linked oscillatory genes (her1 and her7) are synchronized via Notch signaling between the cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This workshop is a continuation and extension to the successful past workshops exploring the intersection of food, technology, place, and people, namely 2009 OZCHI workshop, Hungry 24/7? HCI Design for Sustainable Food Culture and Sustainable Interaction with Food, Technology, and the City [1] and 2010 CHI panel Making Food, Producing Sustainability [3]. The workshop aims to bring together experts from diverse backgrounds including academia, government, industry, and non-for-profit organisations. It specifically aims to create a space for discussion and design of innovative approaches to understanding and cultivating sustainable food practices via human-computer-interaction (HCI) as well as addressing the wider opportunities for the HCI community to engage with food as a key issue for sustainability The workshop addresses environmental, health, and social domains of sustainability in particular, by looking at various conceptual and design approaches in orchestrating sustainable interaction of people and food in and through dynamic techno-social networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a scene invariant crowd counting algorithm that uses local features to monitor crowd size. Unlike previous algorithms that require each camera to be trained separately, the proposed method uses camera calibration to scale between viewpoints, allowing a system to be trained and tested on different scenes. A pre-trained system could therefore be used as a turn-key solution for crowd counting across a wide range of environments. The use of local features allows the proposed algorithm to calculate local occupancy statistics, and Gaussian process regression is used to scale to conditions which are unseen in the training data, also providing confidence intervals for the crowd size estimate. A new crowd counting database is introduced to the computer vision community to enable a wider evaluation over multiple scenes, and the proposed algorithm is tested on seven datasets to demonstrate scene invariance and high accuracy. To the authors' knowledge this is the first system of its kind due to its ability to scale between different scenes and viewpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

-

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated whether conceptual development is greater if students learning senior chemistry hear teacher explanations and other traditional teaching approaches first then see computer based visualizations or vice versa. Five Canadian chemistry classes, taught by three different teachers, studied the topics of Le Chatelier’s Principle and dynamic chemical equilibria using scientific visualizations with the explanation and visualizations in different orders. Conceptual development was measured using a 12 item test based on the Chemistry Concepts Inventory. Data was obtained about the students’ abilities, learning styles (auditory, visual or kinesthetic) and sex, and the relationships between these factors and conceptual development due to the teaching sequences were investigated. It was found that teaching sequence is not important in terms of students’ conceptual learning gains, across the whole cohort or for any of the three subgroups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical reactions underlying genetic regulation are often modelled as a continuous-time, discrete-state, Markov process, and the evolution of the associated probability density is described by the so-called chemical master equation (CME). However the CME is typically difficult to solve, since the state-space involved can be very large or even countably infinite. Recently a finite state projection method (FSP) that truncates the state-space was suggested and shown to be effective in an example of a model of the Pap-pili epigenetic switch. However in this example, both the model and the final time at which the solution was computed, were relatively small. Presented here is a Krylov FSP algorithm based on a combination of state-space truncation and inexact matrix-vector product routines. This allows larger-scale models to be studied and solutions for larger final times to be computed in a realistic execution time. Additionally the new method computes the solution at intermediate times at virtually no extra cost, since it is derived from Krylov-type methods for computing matrix exponentials. For the purpose of comparison the new algorithm is applied to the model of the Pap-pili epigenetic switch, where the original FSP was first demonstrated. Also the method is applied to a more sophisticated model of regulated transcription. Numerical results indicate that the new approach is significantly faster and extendable to larger biological models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dealing with product yield and quality in manufacturing industries is getting more difficult due to the increasing volume and complexity of data and quicker time to market expectations. Data mining offers tools for quick discovery of relationships, patterns and knowledge in large databases. Growing self-organizing map (GSOM) is established as an efficient unsupervised datamining algorithm. In this study some modifications to the original GSOM are proposed for manufacturing yield improvement by clustering. These modifications include introduction of a clustering quality measure to evaluate the performance of the programme in separating good and faulty products and a filtering index to reduce noise from the dataset. Results show that the proposed method is able to effectively differentiate good and faulty products. It will help engineers construct the knowledge base to predict product quality automatically from collected data and provide insights for yield improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Students struggle with learning to program. In recent years, not only has there been a dramatic drop in the number of students enrolling in IT and Computer Science courses, but attrition from these courses continues to be significant. Introductory programming subjects traditionally have high failure rates and as they tend to be core to IT and Computer Science courses can be a road block for many students to their university studies. Is programming really that difficult — or are there other barriers to learning that have a serious and detrimental effect on student progression? In-class experiments were conducted in introductory programming units to confirm our hypothesis that that pair-programming would benefit students' learning to program. We investigated the social and cultural barriers to learning programming by questioning students' perceptions of confidence, difficulty and enjoyment of programming. The results of paired and non-paired students were compared to determine the effect of pair-programming on learning outcomes. Both the empirical and anecdotal results of our experiments strongly supported our hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the field programmable gate array (FPGA) approach for multi-objective and multi-disciplinary design optimisation (MDO) problems. One class of optimisation method that has been well-studied and established for large and complex problems, such as those inherited in MDO, is multi-objective evolutionary algorithms (MOEAs). The MOEA, nondominated sorting genetic algorithm II (NSGA-II), is hardware implemented on an FPGA chip. The NSGA-II on FPGA application to multi-objective test problem suites has verified the designed implementation effectiveness. Results show that NSGA-II on FPGA is three orders of magnitude better than the PC based counterpart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we pursue the task of aligning an ensemble of images in an unsupervised manner. This task has been commonly referred to as “congealing” in literature. A form of congealing, using a least-squares criteria, has been recently demonstrated to have desirable properties over conventional congealing. Least-squares congealing can be viewed as an extension of the Lucas & Kanade (LK)image alignment algorithm. It is well understood that the alignment performance for the LK algorithm, when aligning a single image with another, is theoretically and empirically equivalent for additive and compositional warps. In this paper we: (i) demonstrate that this equivalence does not hold for the extended case of congealing, (ii) characterize the inherent drawbacks associated with least-squares congealing when dealing with large numbers of images, and (iii) propose a novel method for circumventing these limitations through the application of an inverse-compositional strategy that maintains the attractive properties of the original method while being able to handle very large numbers of images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.