818 resultados para composite draft
Resumo:
Pyroelectric sensors work as a thermal transducer converting the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. Ferroelectric ceramics and ferroelectric polymers have been extensively used as thermal detectors. More recently the research in the field of pyroelectricity has been concentrated on discovering materials with higher figures of merit (FOM), which means better sensing materials. Composite materials obtained with ferroelectric ceramics embedded in polymer host have received great attention because of their formability, mechanical resistance and the possibility to change their dielectric property varying the volume fraction of ceramic particles. In this work composite films made of modified lead titanate (PZ34) and poly(ether-ether-ketone) (PEEK) were characterized and used as sensing element to measure X-ray intensity in the ortovoltage range (120 - 300 kVp). The sensor response varies from 2.70 V to 0.80 V in the energy fluency range of 6.30 to 37.20 W/m(2). Furthermore the absorbed energy was analyzed as a function of the ionizing energy. The results indicate that the PZ34/PEEK composite with 60/40 vol.% can be useful to monitor X-ray radiation therapy.
Resumo:
Purpose: To investigate the microleakage of four hydrophilic adhesive systems: one multiple-bottles (Scotchbond Multi-Purpose Plus); two one-bottle (Single Bond, Stae); and one self-etching (Etch & Prime 3.0). Materials and Methods: 120 bovine incisor teeth were divided into four groups (n = 30) and Class V cavities were prepared at the cemento-enamel junction. The cavities were restored with the adhesive systems and with Z100 composite. The teeth were thermocycled 1,000 times between 5 +/- 2 degreesC and 55 +/- 2 degreesC with a dwell time of 1 min, and then placed in a 2% methylene blue dye (pH 7.0) for 4 hrs, washed and sectioned vertically through the center of the restorations. The qualitative evaluation was made by three examiners who distributed pre-established scores (0-4) for each tooth using a stereomicroscope at x30 magnification. Results: In enamel margins little microleakage was observed and the Kruskal-Wallis analysis did not show differences. In dentin margins the KruskaI-Wallis and multiple comparison analyses were applied: microleakage was significantly greater with Stae (median 3) and Scotchbond MP Plus (median 4). Single Bond (median 1) and Etch & Prime 3.0 (median 2) showed the best results in dentin margins, and the statistical analysis did not demonstrate differences in microleakage among these groups.
Resumo:
This study compared the microtensile bond strength of a repair resin to an alumina-reinforced feldspathic ceramic (Vitadur-alpha, Vita) after 3 surface conditioning methods: Group 1, etching with 9.6% hydrofluoric acid for 1 minute plus rinsing and drying, followed by application of silane for 5 minutes; group 2, airborne particle abrasion with 110-mm aluminum oxide using a chairside air-abrasion device followed by silane application for 5 minutes; group 3, chairside tribochemical silica coating with 30-mu m SiOx followed by silane application for 5 minutes (N = 30). Group 1 presented the highest mean bond strength (19.7 +/- 3.8 MPa), which was significantly higher than those of groups 2 (10 +/- 2.6 MPa) and 3 (10.4 +/- 4 MPa) (P <.01). Scanning electron microscope analysis of the failure modes demonstrated predominantly mixed types of failures, with adhesive and/or cohesive failures in all experimental groups.
Resumo:
A method is presented in which light-polymerized composite material is used to obtain retention for a removable partial denture when usable natural tooth undercuts are unavailable. The desired contour is waxed on a diagnostic cast with the use of a surveyor, captured in a light-polymerizing temporary restorative material, and reproduced in composite resin on the abutment teeth.
Resumo:
Cellulose-phosphate composite membranes have been prepared from bacterial cellulose membranes ( BC) and sodium polyphosphate solution. The structure and thermal behavior of the new composites were evaluated by X-ray diffraction (XRD), P-31-nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and thermomechanical analysis (TMA). From XRD analyses the I alpha and I beta cellulose crystalline phases were identified together with crystalline sodium phosphate that covers the cellulose microfibrils as revealed by SEM. P-31 NMR spectra show peaks assigned to Q(0) and Q(1) phosphate structures to be compared to the Q(2) units that characterize the precursor polyphosphate. Glass transition temperature, T-g, obtained from TMA curves and thermal stability obtained from TG and DSC measurements, were observed to be dependent on the phosphate content.