997 resultados para color cycle
Resumo:
The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006): inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.
Resumo:
We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters.
Resumo:
Assigning uncertainty to ocean-color satellite products is a requirement to allow informed use of these data. Here, uncertainty estimates are derived using the comparison on a 12th-degree grid of coincident daily records of the remote-sensing reflectance RRS obtained with the same processing chain from three satellite missions, MERIS, MODIS and SeaWiFS. The approach is spatially resolved and produces σ, the part of the RRS uncertainty budget associated with random effects. The global average of σ decreases with wavelength from approximately 0.7– 0.9 10−3 sr−1 at 412 nm to 0.05–0.1 10−3 sr−1 at the red band, with uncertainties on σ evaluated as 20–30% between 412 and 555 nm, and 30–40% at 670 nm. The distribution of σ shows a restricted spatial variability and small variations with season, which makes the multi-annual global distribution of σ an estimate applicable to all retrievals of the considered missions. The comparison of σ with other uncertainty estimates derived from field data or with the support of algorithms provides a consistent picture. When translated in relative terms, and assuming a relatively low bias, the distribution of σ suggests that the objective of a 5% uncertainty is fulfilled between 412 and 490 nm for oligotrophic waters (chlorophyll-a concentration below 0.1 mg m−3). This study also provides comparison statistics. Spectrally, the mean absolute relative difference between RRS from different missions shows a characteristic U-shape with both ends at blue and red wavelengths inversely related to the amplitude of RRS. On average and for the considered data sets, SeaWiFS RRS tend to be slightly higher than MODIS RRS, which in turn appear higher than MERIS RRS. Biases between mission-specific RRS may exhibit a seasonal dependence, particularly in the subtropical belt.
Evaluating the air-cycle as a refrigerant free alternative for temperature controlled road transport
Resumo:
The performance of an air-cycle refrigeration unit for road transport, which had been previously reported, was analysed in detail and compared with the original design model and an equivalent Thermo King SL200 vapour-cycle refrigeration unit. Poor heat exchanger performance was found to be the major contributor to low coefficient of performance values. Using state-of-the-art, but achievable performance levels for turbomachinery and heat exchangers, the performance of an optimised air-cycle refrigeration unit for the same application was predicted. The power requirement of the optimised air-cycle unit was 7% greater than the equivalent vapour-cycle unit at full-load operation. However, at part-load operation the air-cycle unit was estimated to absorb 35% less power than the vapour-cycle unit. The analysis demonstrated that the air-cycle system could potentially match the overall fuel consumption of the vapour-cycle transport refrigeration unit, while delivering the benefit of a completely refrigerant free system.
Resumo:
The environmental attractions of air-cycle refrigeration are considerable. Following a thermodynamic design analysis, an air-cycle demonstrator plant was constructed within the restricted physical envelope of an existing Thermo King SL200 trailer refrigeration unit. This unique plant operated satisfactorily, delivering sustainable cooling for refrigerated trailers using a completely natural and safe working fluid. The full load capacity of the air-cycle unit at -20 °C was 7,8 kW, 8% greater than the equivalent vapour-cycle unit, but the fuel consumption of the air-cycle plant was excessively high. However, at part load operation the disparity in fuel consumption dropped from approximately 200% to around 80%. The components used in the air-cycle demonstrator were not optimised and considerable potential exists for efficiency improvements, possibly to the point where the air-cycle system could rival the efficiency of the standard vapour-cycle system at part-load operation, which represents the biggest proportion of operating time for most units.
Resumo:
The purpose of this article is to analyse the illicit cycle of narcotics within a human rights framework. It begins by illustrating the benefits of adopting a human rights framework, such as its ability to promote victim-centred and holistic approaches. The article then identifies key human rights issues such as poverty, forced labour, law enforcement practices and addiction to narcotics. It continues with an analysis of the nature and the extent of obligations imposed upon States. This article focuses on three categories of human rights obligations to address: 1) the supply of narcotics; 2) narcotics trafficking; and 3) the demand for narcotics. The main conclusion reached is that a human rights framework can strengthen the global action against the illicit cycle of narcotics.
Resumo:
The quantitative assessment of apoptotic index (AI) and mitotic index (MI) and the immunoreactivity of p53, bcl-2, p21, and mdm2 were examined in tumour and adjacent normal tissue samples from 30 patients with colonic and 22 with rectal adenocarcinoma. Individual features and combined profiles were correlated with clinicopathological parameters and patient survival data to assess their prognostic value. Increased AI was significantly associated with increased bcl-2 expression (p