767 resultados para clearness index
Resumo:
We examine whether a three-regime model that allows for dormant, explosive and collapsing speculative behaviour can explain the dynamics of the S&P 500. We extend existing models of speculative behaviour by including a third regime that allows a bubble to grow at a steady rate, and propose abnormal volume as an indicator of the probable time of bubble collapse. We also examine the financial usefulness of the three-regime model by studying a trading rule formed using inferences from it, whose use leads to higher Sharpe ratios and end of period wealth than from employing existing models or a buy-and-hold strategy.
Resumo:
Major research on equity index dynamics has investigated only US indices (usually the S&P 500) and has provided contradictory results. In this paper a clarification and extension of that previous research is given. We find that European equity indices have quite different dynamics from the S&P 500. Each of the European indices considered may be satisfactorily modelled using either an affine model with price and volatility jumps or a GARCH volatility process without jumps. The S&P 500 dynamics are much more difficult to capture in a jump-diffusion framework.
Resumo:
It is widely accepted that equity return volatility increases more following negative shocks rather than positive shocks. However, much of value-at-risk (VaR) analysis relies on the assumption that returns are normally distributed (a symmetric distribution). This article considers the effect of asymmetries on the evaluation and accuracy of VaR by comparing estimates based on various models.
Resumo:
The Agri-Environment Footprint Index (AFI) has been developed as a generic methodology to assess changes in the overall environmental impacts from agriculture at the farm level and to assist in the evaluation of European agri-environmental schemes (AES). The methodology is based on multicriteria analysis (MCA) and involves stakeholder participation to provide a locally customised evaluation based on weighted environmental indicators. The methodology was subjected to a feasibility assessment in a series of case studies across the EU. The AFI approach was able to measure significant differences in environmental status between farms that participated in an AES and nonparticipants. Wider environmental concerns, beyond the scheme objectives, were also considered in some case studies and the benefits for identification of unintentional (and often beneficial) impacts of AESs are presented. The participatory approach to AES valuation proved efficient in different environments and administrative contexts. The approach proved to be appropriate for environmental evaluation of complex agri-environment systems and can complement any evaluation conducted under the Common Monitoring and Evaluation Framework. The applicability of the AFI in routine monitoring of AES impacts and in providing feedback to improve policy design is discussed.
Resumo:
If stock and stock index futures markets are functioning properly price movements in these markets should best be described by a first order vector error correction model with the error correction term being the price differential between the two markets (the basis). Recent evidence suggests that there are more dynamics present than should be in effectively functioning markets. Using self-exciting threshold autoregressive (SETAR) models, this study analyses whether such dynamics can be related to different regimes within which the basis can fluctuate in a predictable manner without triggering arbitrage. These findings reveal that the basis shows strong evidence of autoregressive behaviour when its value is between the two thresholds but that the extra dynamics disappear once the basis moves above the upper threshold and their persistence is reduced, although not eradicated, once the basis moves below the lower threshold. This suggests that once nonlinearity associated with transactions costs is accounted for, stock and stock index futures markets function more effectively than is suggested by linear models of the pricing relationship.
Resumo:
In this article, we investigate the commonly used autoregressive filter method of adjusting appraisal-based real estate returns to correct for the perceived biases induced in the appraisal process. Many articles have been written on appraisal smoothing but remarkably few have considered the relationship between smoothing at the individual property level and the amount of persistence in the aggregate appraisal-based index. To investigate this issue we analyze a large sample of appraisal data at the individual property level from the Investment Property Databank. We find that commonly used unsmoothing estimates at the index level overstate the extent of smoothing that takes place at the individual property level. There is also strong support for an ARFIMA representation of appraisal returns at the index level and an ARMA model at the individual property level.
Resumo:
This article responds to criticisms that affective job satisfaction research suffers serious measurement problems: Noncomparable measures; studies conceptualizing job satisfaction affectively but measuring it cognitively; and ad hoc measures lacking systematic development and validation, especially across populations by nationality, job level, and job type. We address these problems through a series of qualitative (total N = 28) and quantitative (total N = 901) studies to systematically develop and validate a short affective job satisfaction measure ultimately deriving from Brayfield and Rothe’s (1951) job satisfaction index. Unlike any previous job satisfaction measure, the resulting four-item Brief Index of Affective Job Satisfaction is overtly affective, minimally cognitive, and optimally brief. The new measure also differs from any previous job satisfaction measure in being comprehensively validated not just for internal consistency reliability, temporal stability, convergent and criterion-related validities, but also for cross-population invariance by nationality, job level, and job type.
Resumo:
This paper investigates whether using natural logarithms (logs) of price indices for forecasting inflation rates is preferable to employing the original series. Univariate forecasts for annual inflation rates for a number of European countries and the USA based on monthly seasonal consumer price indices are considered. Stochastic seasonality and deterministic seasonality models are used. In many cases, the forecasts based on the original variables result in substantially smaller root mean squared errors than models based on logs. In turn, if forecasts based on logs are superior, the gains are typically small. This outcome sheds doubt on the common practice in the academic literature to forecast inflation rates based on differences of logs.
Resumo:
Now that stratospheric ozone depletion has been controlled by the Montreal Protocol1, interest has turned to the effects of climate change on the ozone layer. Climate models predict an accelerated stratospheric circulation, leading to changes in the spatial distribution of stratospheric ozone and an increased stratosphere-to-troposphere ozone flux. Here we use an atmospheric chemistry climate model to isolate the effects of climate change from those of ozone depletion and recovery on stratosphere-to-troposphere ozone flux and the clear-sky ultraviolet radiation index—a measure of potential human exposure to ultraviolet radiation. We show that under the Intergovernmental Panel on Climate Change moderate emissions scenario, global stratosphere-to- troposphere ozone flux increases by 23% between 1965 and 2095 as a result of climate change. During this time, the clear-sky ultraviolet radiation index decreases by 9% in northern high latitudes — a much larger effect than that of stratospheric ozone recovery — and increases by 4% in the tropics, and by up to 20% in southern high latitudes in late spring and early summer. The latter increase in the ultraviolet index is equivalent to nearly half of that generated by the Antarctic ‘ozone hole’ that was created by anthropogenic halogens. Our results suggest that climate change will alter the tropospheric ozone budget and the ultraviolet index, which would have consequences for tropospheric radiative forcing, air quality and human and ecosystem health.
Resumo:
Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.