923 resultados para classification aided by clustering
Resumo:
The extraction of relevant terms from texts is an extensively researched task in Text- Mining. Relevant terms have been applied in areas such as Information Retrieval or document clustering and classification. However, relevance has a rather fuzzy nature since the classification of some terms as relevant or not relevant is not consensual. For instance, while words such as "president" and "republic" are generally considered relevant by human evaluators, and words like "the" and "or" are not, terms such as "read" and "finish" gather no consensus about their semantic and informativeness. Concepts, on the other hand, have a less fuzzy nature. Therefore, instead of deciding on the relevance of a term during the extraction phase, as most extractors do, I propose to first extract, from texts, what I have called generic concepts (all concepts) and postpone the decision about relevance for downstream applications, accordingly to their needs. For instance, a keyword extractor may assume that the most relevant keywords are the most frequent concepts on the documents. Moreover, most statistical extractors are incapable of extracting single-word and multi-word expressions using the same methodology. These factors led to the development of the ConceptExtractor, a statistical and language-independent methodology which is explained in Part I of this thesis. In Part II, I will show that the automatic extraction of concepts has great applicability. For instance, for the extraction of keywords from documents, using the Tf-Idf metric only on concepts yields better results than using Tf-Idf without concepts, specially for multi-words. In addition, since concepts can be semantically related to other concepts, this allows us to build implicit document descriptors. These applications led to published work. Finally, I will present some work that, although not published yet, is briefly discussed in this document.
Resumo:
This study focuses on the implementation of several pair trading strategies across three emerging markets, with the objective of comparing the results obtained from the different strategies and assessing if pair trading benefits from a more volatile environment. The results show that, indeed, there are higher potential profits arising from emerging markets. However, the higher excess return will be partially offset by higher transaction costs, which will be a determinant factor to the profitability of pair trading strategies. Also, a new clustering approach based on the Principal Component Analysis was tested as an alternative to the more standard clustering by Industry Groups. The new clustering approach delivers promising results, consistently reducing volatility to a greater extent than the Industry Group approach, with no significant harm to the excess returns.
Resumo:
The purpose of this study was to explore the relationship between the intensity of acid reflux and severity of esophageal tissue damage in a cross-sectional study of patients with gastroesophageal reflux disease (GERD). Seventy-eight patients with were selected in accordance with the strict 24-hour ambulatory esophageal pHmetry (24h-pHM) criteria and distributed into three age groups: Group A: 14 - 24 years of age. Group B: 25 - 54; and Group C: 55 - 64. The 24h-pHM was carried out in accordance with DeMeester standardization, and the Savary-Miller classification for the diagnosis of reflux esophagitis was used. The groups were similar in 24h-pHM parameters (p > 0.05), having above normal values. For the study group as a whole, there was no correlation between age group and intensity of acid reflux, and there was no correlation between intensity of acid reflux and severity of esophageal tissue damage. However, when the same patients were sub-grouped in accordance with the depth of their epithelial injury and then distributed into age groups, there was a significant difference in esophagitis without epithelial discontinuity. Younger patients had less epithelial damage than older patients. Additionally, although there was a significant progression from the least severe to the moderate stages of epithelial damage among the age groups, there was no apparent difference among the age groups in the distribution between the moderate stages and most severe stages. The findings support the conclusion that the protective response of individuals to acid reflux varies widely. Continued aggression by acid reflux appears to lead to the exhaustion of individual mechanisms of epithelial protection in some patients, but not others, regardless of age or duration of the disease. Therefore, the diagnosis and follow-up of GERD should include both measurements of the quantity of refluxed acid and an assessment of the damage to the esophageal epithelium.
Resumo:
Usually, data warehousing populating processes are data-oriented workflows composed by dozens of granular tasks that are responsible for the integration of data coming from different data sources. Specific subset of these tasks can be grouped on a collection together with their relationships in order to form higher- level constructs. Increasing task granularity allows for the generalization of processes, simplifying their views and providing methods to carry out expertise to new applications. Well-proven practices can be used to describe general solutions that use basic skeletons configured and instantiated according to a set of specific integration requirements. Patterns can be applied to ETL processes aiming to simplify not only a possible conceptual representation but also to reduce the gap that often exists between two design perspectives. In this paper, we demonstrate the feasibility and effectiveness of an ETL pattern-based approach using task clustering, analyzing a real world ETL scenario through the definitions of two commonly used clusters of tasks: a data lookup cluster and a data conciliation and integration cluster.
Resumo:
When a pregnant woman is guided to a hospital for obstetrics purposes, many outcomes are possible, depending on her current conditions. An improved understanding of these conditions could provide a more direct medical approach by categorizing the different types of patients, enabling a faster response to risk situations, and therefore increasing the quality of services. In this case study, the characteristics of the patients admitted in the maternity care unit of Centro Hospitalar of Porto are acknowledged, allowing categorizing the patient women through clustering techniques. The main goal is to predict the patients’ route through the maternity care, adapting the services according to their conditions, providing the best clinical decisions and a cost-effective treatment to patients. The models developed presented very interesting results, being the best clustering evaluation index: 0.65. The evaluation of the clustering algorithms proved the viability of using clustering based data mining models to characterize pregnant patients, identifying which conditions can be used as an alert to prevent the occurrence of medical complications.
Resumo:
Lecture Notes in Computer Science, 9273
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.
Resumo:
Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)
Resumo:
OBJECTIVE: Evaluation of inter and intraobserver reproducibility of by the visual method interpretation of cineangiogram in a clinically based context. METHODS: Five interventional cardiologists analyzed 11 segments of 8 coronary cineangiograms at a two month apart sessions. The percent luminal reduction by the lesions were analyzed by two different classifications: in one (A) the lesions were graded in 0% = absent, 1-50% = mild, 51 - 69 = moderate, and > or = 70% = severe; the other classification (B) was a dichotomic one : <70% = nonsignificant and > or = 70%=significant lesions. The agreement were measured by the kappa (k) index. RESULTS: Interobserver agreement was moderate for classification A (1st measurement, k = 0.36 -- 0.63, k m = 0.49; 2nd measurement, k = 0.39-0.68, k m = 0.52) and good for classification B (1st measurement, k = 0.55-0.73, k m = 0.63; 2nd measurement, k = 0.37-0.82, k m = 0.61). Intraobserver levels of agreement were k = 0.57-0.95 for classification A and 0.62-1.0 for classification B. CONCLUSION: The higher level of reproducibility obtained by adopting the dichotomous criteria usually considered for ischemic limits demonstrates that in the present clinical context, the reliability of the simple visual method is adequate for the identification of patients with clinically significant lesions and candidates for myocardial revascularization procedures.
Resumo:
OBJECTIVE - A population-based prospective study was analysed to: a) determine the prevalence of hypertension; b) investigate the clustering of other cardiovascular risk factors and c) verify whether older differed from younger adults in the pattern of clustering. METHODS - The data comprised a representative sample of the population of Bambuí, Brazil. Multiple logistic regression was used to investigate the independent association between hypertension and selected factors. RESULTS - A total of 820 younger adults (82.5%) and 1494 older adults (85.9%) participated in this study. The overall prevalence of hypertension was 24.8% (SE=1.4 %), being higher in women (26.9±1.5%) than in men (22.0± 1.7%) (p=0.033). Hypertension was positively and significantly associated with physical inactivity, overweight, hypercholesterolemia hyperglycemia and hypertriglyceridemia. The coexistence of hypertension with 4 or more of these risk factors occurred 6 times more than expected by chance, after adjusting for age and sex (OR=6.3; 95%CI: 3.4-11.9). The pattern of risk factor clustering in hypertensive individuals differed with age. CONCLUSION - Our results reinforce the need to increase detection and treatment of hypertension and to approach patients' global risk profiles.
Resumo:
1831 v.1