1000 resultados para chemmical control
Resumo:
Direct writing melt electrospinning is an additive manufacturing technique capable of the layer-by-layer fabrication of highly ordered 3d tissue engineering scaffolds from micron-diameter fibres. The utility of these scaffolds, however, is limited by the maximum achievable height of controlled fibre deposition, beyond which the structure becomes increasingly disordered. A source of this disorder is charge build-up on the deposited polymer producing unwanted coulombic forces. In this study we introduce a novel melt electrospinning platform with dual voltage power supplies to reduce undesirable charge effects and improve fibre deposition control. We produced and characterised several 90° cross-hatched fibre scaffolds using a range of needle/collector plate voltages. Fibre thickness was found to be sensitive only to overall potential and invariant to specific tip/collector voltage. We also produced ordered scaffolds up to 200 layers thick (fibre spacing 1 mm, diameter 40 μm) and characterised structure in terms of three distinct zones; ordered, semi-ordered and disordered. Our in vitro analysis indicates successful cell attachment and distribution throughout the scaffolds, with little evidence of cell death after seven days. This study demonstrates the importance of electrostatic control for reducing destabilising polymer charge effects and enabling the fabrication of morphologically suitable scaffolds for tissue engineering.
Resumo:
This thesis presents a new vision-based decision and control strategy for automated aircraft collision avoidance that can be realistically applied to the See and Avoid problem. The effectiveness of the control strategy positions the research as a major contribution toward realising the simultaneous operation of manned and unmanned aircraft within civilian airspace. Key developments include novel classical and visual predictive control frameworks, and a performance evaluation technique aligned with existing aviation practise and applicable to autonomous systems. The overall approach is demonstrated through experimental results on a small multirotor unmanned aircraft, and through high fidelity probabilistic simulation studies.
Resumo:
Adjustable speed induction generators, especially the Doubly-Fed Induction Generators (DFIG) are becoming increasingly popular due to its various advantages over fixed speed generator systems. A DFIG in a wind turbine has ability to generate maximum power with varying rotational speed, ability to control active and reactive by integration of electronic power converters such as the back-to-back converter, low rotor power rating resulting in low cost converter components, etc, DFIG have become very popular in large wind power conversion systems. This chapter presents an extensive literature survey over the past 25 years on the different aspects of DFIG. Application of H8 Controller for enhanced DFIG-WT performance in terms of robust stability and reference tracking to reduce mechanical stress and vibrations is also demonstrated in the chapter.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
This paper presents a trajectory-tracking control strategy for a class of mechanical systems in Hamiltonian form. The class is characterised by a simplectic interconnection arising from the use of generalised coordinates and full actuation. The tracking error dynamic is modelled as a port-Hamiltonian Systems (PHS). The control action is designed to take the error dynamics into a desired closed-loop PHS characterised by a constant mass matrix and a potential energy with a minimum at the origin. A transformation of the momentum and a feedback control is exploited to obtain a constant generalised mass matrix in closed loop. The stability of the close-loop system is shown using the close-loop Hamiltonian as a Lyapunov function. The paper also considers the addition of integral action to design a robust controller that ensures tracking in spite of disturbances. As a case study, the proposed control design methodology is applied to a fully actuated robotic manipulator.
Resumo:
This thesis develops a novel approach to robot control that learns to account for a robot's dynamic complexities while executing various control tasks using inspiration from biological sensorimotor control and machine learning. A robot that can learn its own control system can account for complex situations and adapt to changes in control conditions to maximise its performance and reliability in the real world. This research has developed two novel learning methods, with the aim of solving issues with learning control of non-rigid robots that incorporate additional dynamic complexities. The new learning control system was evaluated on a real three degree-of-freedom elastic joint robot arm with a number of experiments: initially validating the learning method and testing its ability to generalise to new tasks, then evaluating the system during a learning control task requiring continuous online model adaptation.
Resumo:
A modularized battery system with Double Star Chopper Cell (DSCC) based modular multilevel converter is proposed for a battery operated electric vehicle (EV). A design concept for the modularized battery micro-packs for DSCC is described. Multidimensional pulse width modulation (MD-PWM) with integrated inter-module SoC balancing and fault tolerant control is proposed and explained. The DSCC can be operated either as an inverter to drive the EV motor or as a synchronous rectifier connected to external three phase power supply equipment for charging the battery micro-packs. The methods of operation as inverter and synchronous rectifier with integrated inter-module SoC balancing and fault tolerant control are discussed. The proposed system operation as inverter and synchronous rectifier are verified through simulations and the results are presented.
Resumo:
Integration of biometrics is considered as an attractive solution for the issues associated with password based human authentication as well as for secure storage and release of cryptographic keys which is one of the critical issues associated with modern cryptography. However, the widespread popularity of bio-cryptographic solutions are somewhat restricted by the fuzziness associated with biometric measurements. Therefore, error control mechanisms must be adopted to make sure that fuzziness of biometric inputs can be sufficiently countered. In this paper, we have outlined such existing techniques used in bio-cryptography while explaining how they are deployed in different types of solutions. Finally, we have elaborated on the important facts to be considered when choosing appropriate error correction mechanisms for a particular biometric based solution.
Resumo:
It is commonplace to use digital video cameras in robotic applications. These cameras have built-in exposure control but they do not have any knowledge of the environment, the lens being used, the important areas of the image and do not always produce optimal image exposure. Therefore, it is desirable and often necessary to control the exposure off the camera. In this paper we present a scheme for exposure control which enables the user application to determine the area of interest. The proposed scheme introduces an intermediate transparent layer between the camera and the user application which combines the information from these for optimal exposure production. We present results from indoor and outdoor scenarios using directional and fish-eye lenses showing the performance and advantages of this framework.
Resumo:
Despite significant improvements in capacity-distortion performance, a computationally efficient capacity control is still lacking in the recent watermarking schemes. In this paper, we propose an efficient capacity control framework to substantiate the notion of watermarking capacity control to be the process of maintaining “acceptable” distortion and running time, while attaining the required capacity. The necessary analysis and experimental results on the capacity control are reported to address practical aspects of the watermarking capacity problem, in dynamic (size) payload embedding.