922 resultados para change of auditor
Resumo:
BACKGROUND AND OBJECTIVE: The aim of this study was to determine which of two clinically applied methods, electromyography or acceleromyography, was less affected by external disturbances, had a higher sensitivity and which would provide the better input signal for closed loop control of muscle relaxation. METHODS: In 14 adult patients, anaesthesia was induced with intravenous opioids and propofol. The response of the thumb to ulnar nerve stimulation was recorded on the same arm. Mivacurium was used for neuromuscular blockade. Under stable conditions of relaxation, the infusion-rate was decreased and the effects of turning the hand were investigated. RESULTS: Electromyography and acceleromyography both reflected the change of the infusion rate (P = 0.015 and P < 0.001, respectively). Electromyography was significantly less affected by the hand-turn (P = 0.008) than acceleromyography. While zero counts were detected with acceleromyography, electromyography could still detect at least one count in 51.1%. CONCLUSIONS: Electromyography is more reliable for use in daily practice as it is less influenced by external disturbances than acceleromyography.
Resumo:
Many preanalytical variables affect the results of coagulation assays. A possible way to control some of them would be to accept blood specimens shipped in the original collection tube. The aim of our study was to investigate the stability of coagulation assays in citrated whole blood transported at ambient temperature for up to two days after specimen collection. Blood samples from 59 patients who attended our haematology outpatient ward for thrombophilia screening were transported at ambient temperature (outdoor during the day, indoor overnight) for following periods of time: <1 hour, 4-6, 8-12, 24-28 and 48-52 hours prior to centrifugation and plasma-freezing. The following coagulation tests were performed: PT, aPTT, fibrinogen, FII:C, FV:C, FVII:C, FVIII:C, FIX:C, FX:C, FXI:C, VWF:RCo, VWF:Ag, AT, PC activity, total and free PS antigen, modified APC-sensitivity-ratio, thrombin-antithrombin-complex and D-dimer. Clinically significant changes, defined as a percentage change of more than 10% from the initial value, were observed for FV:C, FVIII:C and total PS antigen starting at 24-28 hours, and for PT, aPTT and FVII:C at 48-52 hours. No statistically significant differences were seen for fibrinogen, antithrombin, or thrombin-antithrombin complexes (Friedman repeated measures analysis of variance). The present data suggest that the use of whole blood samples transported at ambient temperature may be an acceptable means of delivering specimens for coagulation analysis. With the exception of factor V and VIII coagulant activity, and total PS antigen all investigated parameters can be measured 24-28 hours after specimen collection without observing clinically relevant changes.
Resumo:
OBJECTIVE: We analysed the production of soluble tumour necrosis factor receptors sTNFR1 and sTNFR2 at sites of inflammation and measured their plasma concentrations to evaluate them as biological markers of disease activity. METHODS: Plasma samples of 35 patients with Behçet's disease (BD) were collected prospectively at monthly intervals and grouped for inactive disease, active BD without arthritis, and active BD with arthritis. sTNFR1 and sTNFR2 concentrations were measured using immunoassays and compared with other biological disease activity parameters. Plasma sTNFR levels were compared to synovial fluid (SF) levels in seven patients. Sixteen tissue samples of mucocutaneous lesions were stained for TNFR2 expression by immunohistochemistry. RESULTS: sTNFR1 and sTNFR2 were found at increased plasma concentrations in active BD, with the highest concentration in active BD with arthritis (p<0.001). Concentrations of both sTNFRs were at least three times higher in SF of arthritic joints than in the corresponding plasma samples (p = 0.025). A change of more than 1 ng/mL of sTNFR2 plasma concentrations correlated with a concordant change in arthritic activity (96% confidence interval). Sensitivity to change was superior to that of sTNFR1, and other biological disease activity parameters such as erythrocyte sedimentation rate (ESR), immunoglobulin (Ig)G, IgA, and interleukin (IL)-10 plasma concentrations. A strong staining for TNFR2 was found in mucocutaneous lesions, where mast cells were identified as the major source for this receptor. CONCLUSIONS: This longitudinal study demonstrates that sTNFR2 plasma concentrations are closely linked with active BD, and especially with arthritis. Taken together with the expression of TNFR molecules in mast cells of mucocutaneous lesions, our results indicate a fundamental role for the TNF/TNFR pathway in BD.
Resumo:
Northern peatlands are large reservoirs of soil organic carbon (C). Historically peatlands have served as a sink for C since decomposition is slowed primarily because of a raised water table (WT) that creates anoxic conditions. Climate models are predicting dramatic changes in temperature and precipitation patterns for the northern hemisphere that contain more than 90% of the world’s peatlands. It is uncertain whether climate change will shift northern peatlands from C sequestering systems to a major global C source within the next century because of alterations to peatland hydrology. This research investigated the effects of 80 years of hydrological manipulations on peatland C cycling in a poor fen peatland in northern Michigan. The construction of an earthen levee within the Seney National Wildlife Refuge in the 1930’s resulted in areas of raised and lowered WT position relative to an intermediate WT site that was unaltered by the levee. We established sites across the gradient of long-term WT manipulations to examine how decadal changes in WT position alter peatland C cycling. We quantified vegetation dynamics, peat substrate quality, and pore water chemistry in relation to trace gas C cycling in these manipulated areas as well as the intermediate site. Vegetation in both the raised and lowered WT treatments has different community structure, biomass, and productivity dynamics compared to the intermediate site. Peat substrate quality exhibited differences in chemical composition and lability across the WT treatments. Pore water dissolved organic carbon (DOC) concentrations increased with impoundment and WT drawdown. The raised WT treatment DOC has a low aromaticity and is a highly labile C source, whereas WT drawdown has increased DOC aromaticity. This study has demonstrated a subtle change of the long-term WT position in a northern peatland will induce a significant influence on ecosystem C cycling with implications for the fate of peatland C stocks.
Resumo:
In the current market system, power systems are operated at higher loads for economic reasons. Power system stability becomes a genuine concern in such operating conditions. In case of failure of any larger component, the system may become stressed. These events may start cascading failures, which may lead to blackouts. One of the main reasons of the major recorded blackout events has been the unavailability of system-wide information. Synchrophasor technology has the capability to provide system-wide real time information. Phasor Measurement Units (PMUs) are the basic building block of this technology, which provide the Global Positioning System (GPS) time-stamped voltage and current phasor values along with the frequency. It is being assumed that synchrophasor data of all the buses is available and thus the whole system is fully observable. This information can be used to initiate islanding or system separation to avoid blackouts. A system separation strategy using synchrophasor data has been developed to answer the three main aspects of system separation: (1) When to separate: One class support machines (OC-SVM) is primarily used for the anomaly detection. Here OC-SVM was used to detect wide area instability. OC-SVM has been tested on different stable and unstable cases and it is found that OC-SVM has the capability to detect the wide area instability and thus is capable to answer the question of “when the system should be separated”. (2) Where to separate: The agglomerative clustering technique was used to find the groups of coherent buses. The lines connecting different groups of coherent buses form the separation surface. The rate of change of the bus voltage phase angles has been used as the input to this technique. This technique has the potential to exactly identify the lines to be tripped for the system separation. (3) What to do after separation: Load shedding was performed approximately equal to the sum of power flows along the candidate system separation lines should be initiated before tripping these lines. Therefore it is recommended that load shedding should be initiated before tripping the lines for system separation.
Resumo:
Ferroic materials, as notable members of smart materials, have been widely used in applications that perform sensing, actuation and control. The macroscopic property change of ferroic materials may become remarkably large during ferroic phase transition, leading to the fact that the macroscopic properties can be tuned by carefully applying a suitable external field (electric, magnetic, stress). To obtain an enhancement in physical and/or mechanical properties, different kinds of ferroic composites have been fabricated. The properties of a ferroic composite are determined not only by the properties and relative amounts of the constituent phases, but also by the microstructure of individual phase such as the phase connectivity, phase size, shape and spatial arrangement. This dissertation mainly focuses on the computational study of microstructure – property – mechanism relations in two representative ferroic composites, i.e., two-phase particulate magnetoelectric (ME) composite and polymer matrix ferroelectric composite. The former is a great example of ferroic composite exhibiting a new property and functionality that neither of the constituent phases possesses individually. The latter well represents the kind of ferroic composites having property combinations that are better than the existing materials. Phase field modeling was employed as the computing tool, and the required models for ferroic composites were developed based on existing models for monolithic materials. Extensive computational simulations were performed to investigate the microstructure-property relations and the underlying mechanism in ferroic composites. In particulate, it is found that for ME composite 0-3 connectivity (isolated magnetostrictive phase) is necessary to exhibit ME effect, and small but finite electrical conductivity of isolated magnetic phase can beneficially enhance ME effect. It is revealed that longitudinal and transverse ME coefficients of isotropic 0-3 particulate composites can be effectively tailored by controlling magnetic domain structures without resort to anisotropic two-phase microstructures. Simulations also show that the macroscopic properties of the ferroelectricpolymer composites critically depend on the ferroelectric phase connectivity while are not sensitive to the sizes and internal grain structures of the ceramic particles. Texturing is found critical to exploit the paraelectric«ferroelectric phase transition and nonlinear polarization behavior in paraelectric polycrystal and its polymer matrix composite. Additionally, a Diffuse Interface Field model was developed to simulate packing and motion in liquid phase which is promising for studying the fabrication of particulatepolymer composites.
Resumo:
Epothilones are macrocyclic bacterial natural products with potent microtubule-stabilizing and antiproliferative activity. They have served as successful lead structures for the development of several clinical candidates for anticancer therapy. However, the structural diversity of this group of clinical compounds is rather limited, as their structures show little divergence from the original natural product leads. Our own research has explored the question of whether epothilones can serve as a basis for the development of new structural scaffolds, or chemotypes, for microtubule stabilization that might serve as a basis for the discovery of new generations of anticancer drugs. We have elaborated a series of epothilone-derived macrolactones whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of a conformationally constrained side chain, the removal of the C3-hydroxyl group, and the replacement of C12 with nitrogen. So far, this approach has yielded analogs 30 and 40 that are the most advanced, the most rigorously modified, structures, both of which are potent antiproliferative agents with low nanomolar activity against several human cancer cell lines in vitro. The synthesis was achieved through a macrolactone-based strategy or a high-yielding RCM reaction. The 12-aza-epothilone ("azathilone" 40) may be considered a "non-natural" natural product that still retains most of the overall structural characteristics of a true natural product but is structurally unique, because it lies outside of the general scope of Nature's biosynthetic machinery for polyketide synthesis. Like natural epothilones, both 30 and 40 promote tubulin polymerization in vitro and at the cellular level induce cell cycle arrest in mitosis. These facts indicate that cancer cell growth inhibition by these compounds is based on the same mechanistic underpinnings as those for natural epothilones. Interestingly, the 9,10-dehydro analog of 40 is significantly less active than the saturated parent compound, which is contrary to observations for natural epothilones B or D. This may point to differences in the bioactive conformations of N-acyl-12-aza-epothilones like 40 and natural epothilones. In light of their distinct structural features, combined with an epothilone-like (and taxol-like) in vitro biological profile, 30 and 40 can be considered as representative examples of new chemotypes for microtubule stabilization. As such, they may offer the same potential for pharmacological differentiation from the original epothilone leads as various newly discovered microtubule-stabilizing natural products with macrolactone structures, such as laulimalide, peloruside, or dictyostatin.
Resumo:
OBJECTIVE: To determine the effects of cognitive-behavioral stress management (CBSM) training on clinical and psychosocial markers in HIV-infected persons. METHODS: A randomized controlled trial in four HIV outpatient clinics of 104 HIV-infected persons taking combination antiretroviral therapy (cART), measuring HIV-1 surrogate markers, adherence to therapy and well-being 12 months after 12 group sessions of 2 h CBSM training. RESULTS: Intent-to-treat analyses showed no effects on HIV-1 surrogate markers in the CBSM group compared with the control group: HIV-1 RNA < 50 copies/ml in 81.1% [95% confidence interval (CI), 68.0-90.6] and 74.5% (95% CI, 60.4-85.7), respectively (P = 0.34), and mean CD4 cell change from baseline of 53.0 cells/microl (95% CI, 4.1-101.8) and 15.5 cells/microl (95% CI, -34.3 to 65.4), respectively (P = 0.29). Self-reported adherence to therapy did not differ between groups at baseline (P = 0.53) or at 12 month's post-intervention (P = 0.47). Significant benefits of CBSM over no intervention were observed in mean change of quality of life scores: physical health 2.9 (95% CI, 0.7-5.1) and -0.2 (95% CI, -2.1 to 1.8), respectively (P = 0.05); mental health 4.8 (95% CI, 1.8-7.3) and -0.5 (95% CI, -3.3 to 2.2) (P = 0.02); anxiety -2.1 (95% CI, -3.6 to -1.0) and 0.3 (95% CI, -0.7 to 1.4), respectively (P = 0.002); and depression -2.1 (95% CI, -3.2 to -0.9) and 0.02 (95% CI, -1.0 to 1.1), respectively (P = 0.001). Alleviation of depression and anxiety symptoms were most pronounced among participants with high psychological distress at baseline. CONCLUSION: CBSM training of HIV-infected persons taking on cART does not improve clinical outcome but has lasting effects on quality of life and psychological well-being.
Resumo:
The hydrogen ion activity (pH) is a very important parameter in environment monitoring, biomedical research and other applications. Optical pH sensors have several advantages over traditional potentiometric pH measurement, such as high sensitivity, no need of constant calibration, easy for miniaturization and possibility for remote sensing. Several pH indicators has been successfully immobilized in three different solid porous materials to use as pH sensing probes. The fluorescent pH indicator fluorescein-5-isothiocyanate (FITC) was covalently bound onto the internal surface of porous silica (pore size ~10 nm) and retained its pH sensitivity. The excited state pK* a of FITC in porous silica (5.58) was slightly smaller than in solution (5.68) due to the free silanol groups (Si-OH) on the silica surface. The pH sensitive range for this probe is pH 4.5 - 7.0 with an error less than 0.1 pH units. The probe response was reproducible and stable for at least four month, stored in DI water, but exhibit a long equilibrium of up to 100 minutes. Sol-gel based pH sensors were developed with immobilization of two fluorescent pH indicators fluorescein-5-(and-6)-sulfonic acid, trisodium salt (FS) and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) through physical entrapment. Prior to immobilization, the indicators were ion-paired with a common surfactant hexadecyltrimethylammonium bromide (CTAB) in order to prevent leaching. The sol-gel films were synthesized through the hydrolysis of two different precursors, ethyltriethoxysilane (ETEOS) and 3- glycidoxypropyltrimethoxysilane (GPTMS) and deposited on a quartz slide through spin coating. The pK a of the indicators immobilized in sol-gel films was much smaller than in solutions due to silanol groups on the inner surface of the sol-gel films and ammonium groups from the surrounding surfactants. Unlike in solution, the apparent pK a of the indicators in sol-gel films increased with increasing ionic strength. The equilibrium time for these sensors was within 5 minutes (with film thickness of ~470 nm). Polyethylene glycol (PEG) hydrogel was of interest for optical pH sensor development because it is highly proton permeable, transparent and easy to synthesize. pH indicators can be immobilized in hydrogel through physical entrapment and copolymerization. FS and HPTS ion-pairs were physically entrapped in hydrogel matrix synthesized via free radical initiation. For covalent immobilization, three indicators, 6,8-dihydroxypyrene-1,3- disulfonic acid (DHPDS), 2,7-dihydroxynaphthalene-3,6-disulfonic acid (DHNDS) and cresol red were first reacted with methacrylic anhydride (MA) to form methacryloylanalogs for copolymerization. These hydrogels were synthesized in aqueous solution with a redox initiation system. The thickness of the hydrogel film is controlled as ~ 0.5 cm and the porosity can be adjusted with the percentage of polyethylene glycol in the precursor solutions. The pK a of the indicators immobilized in the hydrogel both physically and covalently were higher than in solution due to the medium effect. The sensors are stable and reproducible with a short equilibrium time (less than 4 minutes). In addition, the color change of cresol red immobilized hydrogel is vivid from yellow (acidic condition) to purple (basic condition). Due to covalently binding, cresol red was not leaching out from the hydrogel, making it a good candidate of reusable "pH paper".
Resumo:
Background: Medical students do not accurately self-assess their competence. However, little is known about the awareness of change of competence over time. The aim of this study was to evaluate if students are aware of their progress. Summary of work: Twenty-two fourth year medical students had self- and expert-assessments of their clinical skills in musculoskeletal medicine in an OSCE like station (4 point Likert scale) at the beginning (t0) and end (t1) of their eight weeks clerkship in internal medicine. Thirteen students were assigned to the intervention of a 6x1 hour practical examination course; nine took part in the regular clinical clerkship activities only and served as controls. Summary of results/Conclusions: The intervention students significantly improved their skills (from 2.78 ± 0.36 to 3.30 ± 0.36, p<0.05) in contrast to the control students (from 3.11 ± 0.58 to 2.83 ± 0.49, n.s.). At t0, 19 students, at t1 21 out of 22 students underestimated their competence. Correlations between the change of self- and expert-assessment were r=0.43, p<0.05 (all), r=0.47, n.s. (control) and r=-0.12, n.s. (intervention), respectively. Take-home message: Medical students improving their clinical skills by an interactive course in addition to their regular clerkship activities are not aware of their progress
Resumo:
OBJECTIVES: To evaluate the relationship between T1 after intravenous contrast administration (T1Gd) and Delta relaxation rate (DeltaR1) = (1/T1(Gd) - 1/T1o) in the delayed Gadolinium-Enhanced MRI of cartilage (dGEMRIC) evaluation of cartilage repair tissue. MATERIALS AND METHODS: Thirty single MR examinations from 30 patients after matrix-associated autologous chondrocyte transplantations of the knee joint with different postoperative intervals were examined using an 8-channel knee-coil at 3T. T1 mapping using a 3D GRE sequence with a 35/10 degrees flip angle excitation pulse combination was performed before and after contrast administration (dGEMRIC technique). T1 postcontrast (T1(Gd)) and the DeltaR1 (relative index of pre- and postcontrast R1 value) were calculated for repair tissue and the weight-bearing normal appearing control cartilage. For evaluation of the different postoperative intervals, MR exams were subdivided into 3 groups (up to 12 months, 12-24 months, more than 24 months). For statistical analysis Spearman correlation coefficients were calculated. RESULTS: The mean value for T1 postcontrast was 427 +/- 159 ms, for DeltaR1 1.85 +/- 1.0; in reference cartilage 636 +/- 181 ms for T1 postcontrast and 0.83 +/- 0.5 for DeltaR1.The correlation coefficients were highly significant between T1 (Gd) and DeltaR1 for repair tissue (0.969) as well as normal reference cartilage (0.928) in total, and for the reparative cartilage in the early, middle postoperative, and late postoperative interval after surgery (R values: -0.986, -0.970, and -0.978, respectively). Using either T1(Gd) or DeltaR1, the 2 metrics resulted in similar conclusions regarding the time course of change of repair tissue and control tissue, namely that highly significant (P > 0.01) differences between cartilage repair tissue and reference cartilage were found for all follow-up groups. Additionally, for both metrics highly significant differences (P < 0.01) between early follow up and the 2 later postoperative groups for cartilage repair tissue were found. No statistical differences were found between the 2 later follow-up groups of reparative cartilage either for T1 (Gd) or DeltaR1. CONCLUSION: The high correlation between T1 (Gd) and DeltaR1 and the comparable conclusions reached utilizing metric implies that T1 mapping before intravenous administration of MR contrast agent is not necessary for the evaluation of repair tissue. This will help to reduce costs, inconvenience for the patients, simplifies the examination procedure, and makes dGEMRIC more attractive for follow-up of patients after cartilage repair surgeries.
Resumo:
GOALS OF WORK: In patients with locally advanced esophageal cancer, only those responding to the treatment ultimately benefit from preoperative chemoradiation. We investigated whether changes in subjective dysphagia or eating restrictions after two cycles of induction chemotherapy can predict histopathological tumor response observed after chemoradiation. In addition, we examined general long-term quality of life (QoL) and, in particular, eating restrictions after esophagectomy. MATERIALS AND METHODS: Patients with resectable, locally advanced squamous cell- or adenocarcinoma of the esophagus were treated with two cycles of chemotherapy followed by chemoradiation and surgery. They were asked to complete the EORTC oesophageal-specific QoL module (EORTC QLQ-OES24), and linear analogue self-assessment QoL indicators, before and during neoadjuvant therapy and quarterly until 1 year postoperatively. A median change of at least eight points was considered as clinically meaningful. MAIN RESULTS: Clinically meaningful improvements in the median scores for dysphagia and eating restrictions were found during induction chemotherapy. These improvements were not associated with a histopathological response observed after chemoradiation, but enhanced treatment compliance. Postoperatively, dysphagia scores remained low at 1 year, while eating restrictions persisted more frequently in patients with extended transthoracic resection compared to those with limited transhiatal resection. CONCLUSIONS: The improvement of dysphagia and eating restrictions after induction chemotherapy did not predict tumor response observed after chemoradiation. One year after esophagectomy, dysphagia was a minor problem, and global QoL was rather good. Eating restrictions persisted depending on the surgical technique used.
Resumo:
BACKGROUND AND PURPOSE: In order to use a single implant with one treatment plan in fractionated high-dose-rate brachytherapy (HDR-B), applicator position shifts must be corrected prior to each fraction. The authors investigated the use of gold markers for X-ray-based setup and position control between the single fractions. PATIENTS AND METHODS: Caudad-cephalad movement of the applicators prior to each HDR-B fraction was determined on radiographs using two to three gold markers, which had been inserted into the prostate as intraprostatic reference, and one to two radiopaque-labeled reference applicators. 35 prostate cancer patients, treated by HDR-B as a monotherapy between 10/2003 and 06/2006 with four fractions of 9.5 Gy each, were analyzed. Toxicity was scored according to the CTCAE Score, version 3.0. Median follow-up was 3 years. RESULTS: The mean change of applicators positions compared to baseline varied substantially between HDR-B fractions, being 1.4 mm before fraction 1 (range, -4 to 2 mm), -13.1 mm before fraction 2 (range, -36 to 0 mm), -4.1 mm before fraction 3 (range, -21 to 9 mm), and -2.6 mm at fraction 4 (range, -16 to 9 mm). The original position of the applicators could be readjusted easily prior to each fraction in every patient. In 18 patients (51%), the applicators were at least once readjusted > 10 mm, however, acute or late grade > or = 2 genitourinary toxicity was not increased (p = 1.0) in these patients. CONCLUSION: Caudad position shifts up to 36 mm were observed. Gold markers represent a valuable tool to ensure setup accuracy and precise dose delivery in fractionated HDR-B monotherapy of prostate cancer.
Resumo:
In Europe and the United States, the recreational use of gamma-hydroxy butyric acid (GHB) at dance clubs and "rave" parties has increased substantially. In addition, GHB is used to assist in the commission of sexual assaults. The aim of this controlled clinical study was to acquire pharmacokinetic profiles, detection times, and excretion rates in human subjects. Eight GHB-naïve volunteers were administered a single 25-mg/kg body weight oral dose of GHB, and plasma, urine, and oral fluid specimens were analyzed by using gas chromatography-mass spectrometry (GC-MS). Liquid-liquid extraction was performed after acid conversion of GHB to gamma-butyrolactone. Limits of quantitation of 0.1 (oral fluid), 0.2 (urine), and 0.5 microg/mL (plasma) could be achieved in the selected ion monitoring mode. GHB plasma peaks of 39.4 +/- 25.2 microg/mL (mean +/- SEM) occurred 20-45 min after administration. The terminal plasma elimination half-life was 30.4 +/- 2.45 min, the distribution volume 52.7 +/- 15.0 L, and the total clearance 1228 +/- 233 microL/min. In oral fluid, GHB could be detected up to 360 min, with peak concentrations of 203 +/- 92.4 microg/mL in the 10-min samples. In urine, 200 +/- 71.8 and 230 +/- 86.3 microg/mL, were the highest GHB levels measured at 30 and 60 min, respectively. Only 1.2 +/- 0.2% of the dose was excreted, resulting in a detection window of 720 min. Common side-effects were confusion, sleepiness, and dizziness; euphoria and change of vital functions were not observed. GHB is extensively metabolized and rapidly eliminated in urine and oral fluid. Consequently, samples should be collected as soon as possible after ingestion.
Resumo:
Colonization with more than one distinct strain of the same species, also termed cocolonization, is a prerequisite for horizontal gene transfer between pneumococcal strains that may lead to change of the capsular serotype. Capsule switch has become an important issue since the introduction of conjugated pneumococcal polysaccharide vaccines. There is, however, a lack of techniques to detect multiple colonization by S. pneumoniae strains directly in nasopharyngeal samples. Two hundred eighty-seven nasopharyngeal swabs collected during the prevaccine era within a nationwide surveillance program were analyzed by a novel technique for the detection of cocolonization, based on PCR amplification of a noncoding region adjacent to the pneumolysin gene (plyNCR) and restriction fragment length polymorphism (RFLP) analysis. The numbers of strains and their relative abundance in cocolonized samples were determined by terminal RFLP. The pneumococcal carriage rate found by PCR was 51.6%, compared to 40.0% found by culture. Cocolonization was present in 9.5% (10/105) of samples, most (9/10) of which contained two strains in a ratio of between 1:1 and 17:1. Five of the 10 cocolonized samples showed combinations of vaccine types only (n = 2) or combinations of nonvaccine types only (n = 3). Carriers of multiple pneumococcal strains had received recent antibiotic treatment more often than those colonized with a single strain (33% versus 9%, P = 0.025). This new technique allows for the rapid and economical study of pneumococcal cocolonization in nasopharyngeal swabs. It will be valuable for the surveillance of S. pneumoniae epidemiology under vaccine selection pressure.