957 resultados para chains with unbounded variable length memory
Resumo:
The dataset is based on samples collected in the summer of 1998 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 69 samples (from 22 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The Danubs 2002 dataset contains zooplankton data collected in April, June,September and October 2002 in 11 station allong 5 transect in front of the Romanian littoral. Zooplankton sampling was undertaken at 11 stations where samples were collected using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
The dataset is based on samples collected in the summer of 2001 in the Western Black Sea in front of Bulgaria coast (transects at c. Kaliakra and c. Galata). The whole dataset is composed of 26 samples (from 10 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in discrete layers 0-10, 10-20, 10-25, 25-50, 50-75, 75-90. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
This paper presents chlorine stable isotope compositions (delta37Cl) of sediment pore waters collected by squeezing sediment cores from the sediment-basement interface along an East-West transect through the eastern flank of the Juan de Fuca Ridge (ODP Leg 168). These "near basement fluids" (NBF) are generally thought to be representative of low-temperature fluids circulating in the off-axis basaltic crust. The delta37Cl value of the fluid directly sampled from a flow at the base of Site 1026 (WSTP1026) is also reported. NBF display delta37Cl values between -2.09? and -0.12? relative to the Standard Mean Ocean Chloride (SMOC defined as 0?) and small variations in chlorinity (~4%). These data contrast with the homogeneity of delta37Cl values associated with highly variable chlorinities observed in high-temperature on-axis fluids [Bonifacie et al., 2005, doi:10.1016/j.chemgeo.2005.06.008]. The NBF delta37Cl values show a general decreasing trend with distance from the ridge-axis except for two fluids. When plotted against delta18O values, the delta37Cl of the NBF show two different trends. This paper discusses the possible contributions on NBF delta37Cl values of fluid-mixing, water-rock interactions and transport processes (diffusion, ion membrane filtration) that can occur in the igneous basement. However, as none of these processes can fully explain the observed delta37Cl variations, the potential effect of the sediment cover is also investigated. At site 1026, the interstitial pore fluid displays a delta37Cl signature significantly lower than that of the fluid discharge sample (-1.90? and -0.28?, respectively). This difference, demonstrated here cannot be an artifact of the sampling method, rather indicates the influence of the sediment cover on NBF delta37Cl values. The potential contributions of physical processes associated with transport/compaction (e.g., diffusion, ion membrane filtration, adsorption, ion exchange) on NBF delta37Cl values are qualitatively discussed here but require additional studies for further insights. However, this study indicates that "near basement fluids" (NBF) are not, at least for Cl isotopic compositions, necessarily as representative of fluids circulating in the basaltic crust as initially thought. These results add new constraints on Cl geodynamics and show that Cl-isotopes fractionate during low-temperature circulation of fluids in off-axis and off-margin flow contexts, but not to the extent observed for active margins. Fluids circulating at low-temperature in the magmatic and/or the sedimentary part of the oceanic crust might have played a major role on the delta37Cl evolution of seawater over geologic time.
Resumo:
Sediments recovered by drilling during Legs 58, 59, and 60 in the North and South Philippine Sea have been analyzed by X-ray diffractometry. The CaCO3 content was measured separately. The sites encompass several volcanic ridges and intervening inter-arc basin troughs as well as sites on the Mariana arc fore-arc sediment prism and the Mariana Trench. The sediments at all sites received major volcanogenic input from the various arcs; they tend to be rich in volcanic glass, with associated quartz, feldspar, pyroxenes and amphibole. Carbonate is a major component only at Site 445 at the southern end of the Daito Ridge, and at Site 448 on the Palau-Kyushu Ridge. All other sites were either deep relative to the carbonate compensation depth or had very high non-carbonate sedimentation rates. Clay minerals are mainly smectite and illite with lesser variable proportions of chlorite and kaolinite. Smectite predominates over illite except at sites in the Shikoku Basin and the Daito Ridge, and at one site in the Mariana Trench. At several sites, smectite increases and illite decreases with depth. Principal zeolites are phillipsite and clinoptilolite. Analcime occurs in some samples.
Resumo:
This research investigates the spatial market integration of the Chilean wheat market in relation with its most representative international markets by using a vector error correction model (VECM) and how a price support policy, as a price band, affect it. The international market was characterized by two relevant wheat prices: PAN from Argentina and Hard Red Winter from the United States. The spatial market integration level, expressed in the error correction term (ECT), allowed concluding that there is a high integration degree among these markets with a variable influence of the price band mechanism mainly related with its estimation methodology. Moreover, this paper showed that Chile can be seen as price taker as long as the speed of its adjustment to international shocks, being these reactions faster than in the United States and Argentina. Finally, the results validated the "Law of the One Price", which assumes price equalization across all local markets in the long run.
Resumo:
Recent sediments with distinct signs of hydrothermal alteration sampled in the Hess Deep(Galapagos Ridge, East Pacific Rise) contained a piece of ash-gray rock, which differed from other rock fragments by degree of consolidation, conchoidal fracture, and had properties of asbestos. Our studies found that the sample represented mixture of asbestos-like pyroxene of diopside-hedenbergite composition, amphibole of tremolite composition and a new mineral, which basic structure consisted of bands of triple pyroxene chains with the radical [Si6O16]. The latter can be regarded as intermediate between amphiboles and layered silicates. Also in some parts of the sample presence of trioctahedral vermiculite-chlorite was indicated. Genesis of the studied asbestos rock is considered from the standpoint of high-temperature hydrothermal-metasomatic alteration of sediment by post-magmatic mineralized halide solutions.
Resumo:
The Sesame dataset contains mesozooplankton data collected during April 2008 in the Levantine Basin (between 33.20 and 36.50 N latitude and between 30.99 and 31.008 E longitude). Mesozooplankton samples were collected by using a WP-2 closing net with 200 µm mesh size during day hours (07:00-18:00). Samples were taken from 0-50, 50-100, 100-200 m layers at 5 stations in Levantine Basin The dataset includes samples analyzed for mesozooplankton species composition, abundance and total mesozooplankton biomass. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling biomass was measured by weighing filters and then determined by sampling volume. The samples were sieved sequentially through meshes of 500 and 200 micron to separate the mesozooplankton into size fractions. The entire sample (1/2) or an aliquot of the taxon-specific mesozooplankton abundance and the total abundance of the mesozooplankton were was analyzed under the binocular microscope. Minimum 500 individuals of mesozooplankton were identified and numerated at higher taxonomic level. Taxonomic identification was done at the METU- Institute of Marine Sciences by Alexandra Gubanova,Tuba Terbiyik using the relevant taxonomic literatures. Mesozooplankton abundance and biomass were estimated by Zahit Uysal and Yesim Ak.
Resumo:
The Sesame dataset contains mesozooplankton data collected during April 2008 in the Marmara Sea (between 40°15' - 34°00N latitude and 19°00 - 23°10'E longitude). Sampling was always performed in day hours (07:00-18:00 local time). Samples were taken at 6 stations in the Marmara Sea. Mesozooplankton samples were collected by using a WP-2 closing net with 200 µm mesh size. Sample was immediately fixed and preserved in a formaldehyde-seawater solution (4% final concentration) to be successively analyzed in the laboratory for species composition, abundance and total biomass. The algal organisms materials were then seperated from the mesozooplankton subsample at the dissecting microscope in the laboratory because of the contamination of the net samples with large-sized algae and mucilaginous organic matters. Afterwards, each samples were filtered on GF/C (pre combusted and weighed) for biomass measurements for dry weight. The dataset includes samples analyzed for mesozooplankton species composition, abundance and total mesozooplankton biomass. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling biomass was measured by weighing filters and then determined according to sampling volume. 1/2 sample or an aliquot was analyzed under the binocular microscope. Copepod species were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Taxonomic identification was done at the METU-Institute of Marine Sciences by Tuba Terbiyik using the relevant taxonomic literatures.
Resumo:
With a 6-channel integrating nephelometer spectral scattering properties of the atmospheric aerosol have been measured during the third part of the Atlantic Expedition 1969. A meridional cross section of light scattering integrals in the wavelength range 0.475 µm to 0.924 µm was recorded reaching from 10° S to 60° N along 30° W. With a new algorithm the time series of hourly scattering spectra was inverted yielding a first meridional cross section of the median radius of the number size distribution in situ. Three air mass regimes could be distinguished in the course of the experiment, the first one being the extremely clean air of the SE-trade south of the ITC. An abrupt increase in light scattering marked the hemispheric change when the ship entered the NE-trade which was heavily loaded with Sahara dust. North of the trade region the ship sailed through maritime North Atlantic air masses with highly variable light scattering and a slow decrease in median radius with latitude.
Resumo:
The Danubs 2000 dataset contains zooplankton data collected in April, June. October and November 2000 in 11 station allong 5 transect in front of the Romanian littoral. Zooplankton sampling was undertaken at 11 stations where samples were collected using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
Sub-Arctic marine ecosystems are some of the most productive ecosystems in the world's oceans. The capacity of herbivorous zooplankton, such as Calanus, to biosynthesize and store large amounts of lipids during the short and intense spring bloom is a fundamental adaptation which facilitates the large production in these ecosystems. These energy-rich lipids are rapidly transferred through the food chain to Arctic seals. The fatty acids and stable isotopes from harp seal (Phoca groenlandica) and hooded seal (Cystophora cristata) off East Greenland as well as their potential prey, were analysed. The results were used to describe the lipid dynamics and energy transfer in parts of the East Greenland ecosystem. Even if the two seal species showed considerable overlap in diet and occurred at relatively similar trophic levels, the fatty acid profiles indicated that the bases of the food chains of harp and hooded seals were different. The fatty acids of harp seals originate from diatom-based food chain, whereas the fatty acids of hooded seals originate from dinoflagellate and the prymnesiophyte Phaeocystis pouchetii-based food chain. Stable isotope analyses showed that both species are true carnivores on the top of their food chains, with hooded seal being slightly higher on the food chain than harp seal.
Resumo:
The "CoMSBlack-95" dataset is based on samples collected in the summer of 1995. The whole dataset is composed of 81 samples (28 stations) with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36 cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov and Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov and Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The Est Constanta 1981-1985 dataset contains zooplankton data collected allong a 5 station transect in front of the city Constanta (44°10'N, 28°41.5'E - EC1; 44°10'N, 28°47'E - EC2; 44°10'N, 28°54'E - EC3; 44°10'N, 29°08'E - EC4; 44°10'N, 29°22'E - EC5). Zooplankton sampling was undertaken at 5 stations where samples were collected using a Juday closing net in the 0-10, 10-25, 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
The SHELF 1997 dataset contains zooplankton data collected in April, May and June 1997 5 transect in front of the Romanian littoral . Zooplankton sampling was undertaken using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.