977 resultados para chain reaction
Resumo:
BACKGROUND:
Increased superoxide anion production increases oxidative stress and reduces nitric oxide bioactivity in vascular disease states. NAD(P)H oxidase is an important source of superoxide in human blood vessels, and some studies suggest a possible association between polymorphisms in the NAD(P)H oxidase CYBA gene and atherosclerosis; however, no functional data address this hypothesis. We examined the relationships between the CYBA C242T polymorphism and direct measurements of superoxide production in human blood vessels.
METHODS AND RESULTS:
Vascular NAD(P)H oxidase activity was determined in human saphenous veins obtained from 110 patients with coronary artery disease and identified risk factors. Immunoblotting, reverse-transcription polymerase chain reaction, and DNA sequencing showed that p22phox protein, mRNA, and 242C/T allelic variants are expressed in human blood vessels. Vascular superoxide production, both basal and NADH-stimulated, was highly variable between patients, but the presence of the CYBA 242T allele was associated with significantly reduced vascular NAD(P)H oxidase activity, independent of other clinical risk factors for atherosclerosis.
CONCLUSIONS:
Association of the CYBA 242T allele with reduced NAD(P)H oxidase activity in human blood vessels suggests that genetic variation in NAD(P)H oxidase components may play a significant role in modulating superoxide production in human atherosclerosis.
Resumo:
We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.
Resumo:
Objective: To describe the ocular phenotype in patients with ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome (MIM#604292) and to determine the pathogenic basis of visual morbidity. Design: Retrospective case series. Participants: Nineteen families (23 patients) affected by EEC syndrome from the United Kingdom, Ireland, and Italy. Methods: General medical examination to fulfill the diagnostic criteria for EEC syndrome and determine the phenotypic severity. Mutational analysis of p63 was performed by polymerase chain reaction-based bidirectional Sanger sequencing. All patients with EEC syndrome underwent a complete ophthalmic examination and ocular surface assessment. Limbal stem cell deficiency (LSCD) was diagnosed clinically on the basis of corneal conjunctivalization and anatomy of the limbal palisades of Vogt. Impression cytology using immunofluorescent antibodies was performed in 1 individual. Histologic and immunohistochemical analyses were performed on a corneal button and corneal pannus from 2 EEC patients. Main Outcome Measures: The EEC syndrome phenotypic severity (EEC score), best-corrected Snellen visual acuity (decimal fraction), slit-lamp biomicroscopy, tear function index, tear breakup time, LSCD, p63 DNA sequence variants, impression cytology, and corneal histopathology. Results: Eleven heterozygous missense mutations in the DNA binding domain of p63 were identified in all patients with EEC syndrome. All patients had ocular involvement and the commonest was an anomaly of the meibomian glands and lacrimal drainage system defects. The major cause of visual morbidity was progressive LSCD, which was detected in 61% (14/23). Limbal stem cell deficiency was related to advancing age and caused a progressive keratopathy, resulting in a dense vascularized corneal pannus, and eventually leading to visual impairment. Histologic analysis and impression cytology confirmed LSCD. Conclusions: Heterozygous p63 mutations cause the EEC syndrome and result in visual impairment owing to progressive LSCD. There was no relationship of limbal stem cell failure with the severity of EEC syndrome, as classified by the EEC score, or the underlying molecular defect in p63. Financial Disclosure(s): The authors have no proprietary or commercial interest in any of the materials discussed in this article. © 2012 American Academy of Ophthalmology.
Resumo:
FMRFamide-like peptides (FLPs) are a diverse group of neuropeptides that are expressed abundantly in nematodes. They exert potent physiological effects on locomotory, feeding and reproductive musculature and also act as neuromodulators. However, little is known about the specific expression patterns and functions of individual peptides. The current study employed rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) to characterize flp genes from infective juveniles of the root knot nematodes, Meloidogyne incognita and Meloidogyne minor. The peptides identified from these transcripts are sequelogs of FLPs from the free-living nematode, Caenorhabditis elegans; the genes have therefore been designated as Mi-flp-1, Mi-flp-7, Mi-flp-12, Mm-flp-12 and Mi-flp-14. Mi-flp-1 encodes five FLPs with the common C-terminal moiety, NFLRFamide. Mi-flp-7 encodes two copies of APLDRSALVRFamide and APLDRAAMVRFamide and one copy of APFDRSSMVRFamide. Mi-flp-12 and Mm-flp-12 encode the novel peptide KNNKFEFIRFamide (a longer version of RNKFEFIRFamide found in C. elegans). Mi-flp-14 encodes a single copy of KHEYLRFamide (commonly known as AF2 and regarded as the most abundant nematode FLP), and a single copy of the novel peptide KHEFVRFamide. These FLPs share a high degree of conservation between Meloidogyne species and nematodes from other clades, including those of humans and animals, perhaps suggesting a common neurophysiological role which may be exploited by novel drugs. FLP immunoreactivity was observed for the first time in Meloidogyne, in the circumpharyngeal nerve ring, pharyngeal nerves and ventral nerve cord. Additionally, in situ hybridization revealed Mi-flp-12 expression in an RIR-like neuron and Mi-flp-14 expression in SMB-like neurons, respectively. These localizations imply physiological roles for FLP-12 and FLP-14 peptides, including locomotion and sensory perception.
Resumo:
Loop-mediated isothermal amplification (LAMP) is an innovative technique that allows the rapid detection of target nucleic acid sequences under isothermal conditions without the need for complex instrumentation. The development, optimization, and clinical validation of a LAMP assay targeting the ctrA gene for the rapid detection of capsular Neisseria meningitidis were described. Highly specific detection of capsular N. meningitidis type strains and clinical isolates was demonstrated, with no cross-reactivity with other Neisseria spp. or with a comprehensive panel of other common human pathogens. The lower limit of detection was 6 ctrA gene copies detectable in 48 min, with positive reactions readily identifiable visually via a simple color change. Higher copy numbers could be detected in as little as 16 min. When applied to a total of 394 clinical specimens, the LAMP assay in comparison to a conventional TaqMan® based real-time polymerase chain reaction system demonstrated a sensitivity of 100% and a specificity of 98.9% with a ? coefficient of 0.942. The LAMP method represents a rapid, sensitive, and highly specific technique for the detection of N. meningitidis and has the potential to be used as a point-of-care molecular test and in resource-poor settings.
Resumo:
Introduction: Basal-like breast cancers (BL-BCa) have the worst prognosis of all subgroups of this disease. Hyaluronan (HA) and the HA receptor CD44 have a long-standing association with cell invasion and metastasis of breast cancer. The purpose of this study was to establish the relation of CD44 to BL-BCa and to characterize how HA/CD44 signaling promotes a protease-dependent invasion of breast cancer (BrCa) cells.
Methods: CD44 expression was determined with immunohistochemistry (IHC) analysis of a breast cancer tissue microarray (TMA). In vitro experiments were performed on a panel of invasive BL-BCa cell lines, by using quantitative polymerase chain reaction (PCR), immunoblotting, protease activity assays, and invasion assays to characterize the basis of HA-induced, CD44-mediated invasion.
Results: Expression of the hyaluronan (HA) receptor CD44 associated with the basal-like subgroup in a cohort of 141 breast tumor specimens (P = 0.018). Highly invasive cells of the representative BL-BCa cell line, MDA-MB-231 (MDA-MB-231Hi) exhibited increased invasion through a basement membrane matrix (Matrigel) and collagen. In further experiments, HA-induced promotion of CD44 signaling potentiated expression of urokinase plasminogen activator (uPA) and its receptor uPAR, and underpinned an increased cell-associated activity of this serine protease in MDA-MB-231Hi and a further BL-BCa cell line, Hs578T cells. Knockdown of CD44 attenuated both basal and HA-stimulated uPA and uPAR gene expression and uPA activity. Inhibition of uPA activity by using (a) a gene-targeted RNAi or (b) a small-molecule inhibitor of uPA attenuated HA-induced invasion of MDA-MB-231Hi cells through Matrigel. HA/CD44 signaling also was shown to increase invasion of MDA-MB-231 cells through collagen and to potentiate the collagen-degrading activity of MDA-MB-231Hi cells. CD44 signaling was subsequently shown to upregulate expression of two potent collagen-degrading enzymes, the cysteine protease cathepsin K and the matrix metalloprotease MT1-MMP. RNAi- or shRNA-mediated depletion of CD44 in MDA-MB-231Hi cells decreased basal and HA-induced cathepsin K and MT1-MMP expression, reduced the collagen-degrading activity of the cell, and attenuated cell invasion through collagen. Pharmacologic inhibition of cathepsin K or RNAi-mediated depletion of MT1-MMP also attenuated MDA-MB-231Hi cell invasion through collagen.
Conclusion: HA-induced CD44 signaling increases a diverse spectrum of protease activity to facilitate the invasion associated with BL-BCa cells, providing new insights into the molecular basis of CD44-promoted invasion.
Resumo:
Gastric cancer is a major cause of global cancer mortality. We surveyed the spectrum of somatic alterations in gastric cancer by sequencing the exomes of 15 gastric adenocarcinomas and their matched normal DNAs. Frequently mutated genes in the adenocarcinomas included TP53 (11/15 tumors), PIK3CA (3/15) and ARID1A (3/15). Cell adhesion was the most enriched biological pathway among the frequently mutated genes. A prevalence screening confirmed mutations in FAT4, a cadherin family gene, in 5% of gastric cancers (6/110) and FAT4 genomic deletions in 4% (3/83) of gastric tumors. Frequent mutations in chromatin remodeling genes (ARID1A, MLL3 and MLL) also occurred in 47% of the gastric cancers. We detected ARID1A mutations in 8% of tumors (9/110), which were associated with concurrent PIK3CA mutations and microsatellite instability. In functional assays, we observed both FAT4 and ARID1A to exert tumor-suppressor activity. Somatic inactivation of FAT4 and ARID1A may thus be key tumorigenic events in a subset of gastric cancers.
Resumo:
Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised.
Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa.
Design, setting and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten(+/-)) mice harbouring inactivation of one PTEN allele.
Interventions: Small interfering RNA (siRNA)- or small hairpin RNA (shRNA)-directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions.
Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays.
Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions displaying atypical cytologic features in Pten(+/-) murine prostate tissue relative to normal epithelium in wild-type PTEN (Pten(WT)) glands. Attenuation of CXCL8 signalling decreased viability of PCa cells harbouring partial or complete PTEN loss through promotion of G1 cell cycle arrest and apoptosis. The current absence of clinical validation is a limitation of the study.
Conclusions: PTEN loss induces a selective upregulation of CXCL8 signalling that sustains the growth and survival of PTEN-deficient prostate epithelium.
Resumo:
Oxidative stress appears to be important in the pathogenesis of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Single-nucleotide polymorphisms (SNPs) of antioxidant enzyme genes may play a part in determining individual susceptibility to these diseases. The Factors Influencing the Barrett's Adenocarcinoma Relationship (FINBAR) study is a population-based, case-control study of BE and EAC in Ireland. DNA from EAC (n = 207), BE (> or =3 cm BE at endoscopy with specialized intestinal metaplasia on biopsy, n = 189) and normal population controls (n = 223) were analyzed. Several SNPs spanning the genes for glutathione S-transferase P1 (GSTP1), manganese superoxide dismutase (MnSOD) and glutathione peroxidase 2 (GPX2) were genotyped using multiplex polymerase chain reaction and SNaPshottrade mark. The chi(2) test was used to compare genotype and allele frequencies between case and control subjects. Linkage disequilibrium between SNPs was quantified using Lewontin's D' value and haplotype frequency estimates obtained using Haploview. Eleven SNPs were genotyped (six for GSTP1, three for MnSOD and two for GPX2); all were in Hardy-Weinberg equilibrium. None was significantly associated with EAC or BE even before Bonferroni correction. Odds ratios for EAC for individual SNPs ranged from 0.68 [95% confidence interval (CI) 0.43-1.08] to 1.25 (95% CI 0.73-2.16), and for BE from 0.84 (95% CI 0.52-1.30) to 1.30 (95% CI 0.85-1.97). SNPs in all three genes were in strong linkage disequilibrium (D' > 0.887) but haplotype analysis did not show any significant association with EAC or BE. SNPs involving the GSTP1, MnSOD and GPX2 genes were not associated with BE or EAC. Further studies aimed at identifying susceptibility genes should focus on different antioxidant genes or different pathways.
Resumo:
High-resolution polymerase chain reaction using sequence-specific oligonucleotide probes (PCR-SSOP) typing methods for HLA-A identification have been established. The four systems, which operate independently of each other, are intended for use as secondary typing systems following HLA-A identification with a medium-resolution PCR-SSOP technique. The systems, all using digoxigenin-labelled probes, are based on group specific amplifications for resolution of: i) HLA-A*29 & -A*33; ii) HLA-A*24 & -A*30; and iii) HLA-A*26, -A*25, -A*11, -A*34, -A*66 and -A*68 alleles, respectively. The fourth system, for the detection of HLA-A*02 alleles, is a modification of a previously reported PCR-SSOP subtyping system. The methods have been applied to individuals from the local bone marrow registry and HLA-A allele frequencies for the Northern Ireland population have been established.
Resumo:
A study was carried out to compare the API20C technology with polymerase chain reaction amplification and direct sequencing of the short internal transcribed spacer region 2 (ITS2) for the identification of 58 isolates of invasive candida species obtained from patients with bloodstream infections over the seven year period 1994 to 2000. Overall, there was only one disagreement between the phenotypic and genotypic identification, where the API scheme identified the isolate as C albicans but the molecular method identified it as C dubliniensis. This study demonstrated that the API20C method is useful in the identification of Candida spp isolated from blood culture and that molecular methods do not enhance identifications made using the API20C scheme. However, for correct reporting of C dubliniensis, an emerging bloodborne pathogen, it is recommended that all isolates identified as C albicans by the API20C scheme are further examined phenotypically and/or genotypically.
Resumo:
Saxitoxin (STX) is a low molecular weight neurotoxin mainly produced by certain marine dinoflagellates that, along with its family of similarly related paralytic shellfish toxins, may cause the potentially fatal intoxication known as paralytic shellfish poisoning. Illness and fatality rates are low due to the effective monitoring programs that determine when toxins exceed the established regulatory action level and effectuate shellfish harvesting closures accordingly. Such monitoring programs rely on the ability to rapidly screen large volumes of samples. Many of the screening assays currently available employ antibodies or live animals. This research focused on developing an analytical recognition element that would eliminate the challenges associated with the limited availability of antibodies and the use of animals. Here we report the discovery of a DNA aptamer that targets STX. Concentration-dependent and selective binding of the aptamer to STX was determined using a surface plasmon resonance sensor. Not only does this work represent the first reported aptamer to STX, but also the first aptamer to any marine biotoxin. A novel strategy of using a toxin-protein conjugate for DNA aptamer selection was successfully implemented to overcome the challenges associated with aptamer selection to small molecules. Taking advantage of such an approach could lead to increased diversity and accessibility of aptamers to low molecular weight toxins, which could then be incorporated as analytical recognition elements in diagnostic assays for foodborne toxin detection. The selected STX aptamer sequence is provided here, making it available to any investigator for use in assay development for the detection of STX.
Resumo:
Accurate field data on trophic interactions for suspension feeders are lacking, and new approaches to dietary analysis are necessary. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was integrated with stable isotope analysis to examine dietary patterns in suspension-feeding Mytilus spp. from seven spatially discrete locations within a semi-enclosed marine bay (Strangford Lough, Northern Ireland) during June 2009. Results of the two methods were highly correlated, reflecting dietary variation in a similar manner. Variation in PCR-DGGE data was more strongly correlated with the principal environmental gradient (distance from the opening to the Irish Sea), while values of dC and dN became progressively enriched, suggesting a greater dependence on animal tissue and benthic microalgae. Diatoms and crustaceans were the most frequently observed phylotypes identified by sequencing, but specific DNA results provided little support for the trophic trends observed in the stable isotope data. This combined approach offers an increased level of trophic insight for suspension feeders and could be applied to other organisms. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Background: The interleukin 10 knockout mouse (IL10-KO) is a model of human inflammatory bowel disease (IBD) used to Study host microbial interactions and the action of potential therapeutics. Using Affymetrix data analysis, important signaling pathways and transcription factors relevant to gut inflammation and antiinflammatory probiotics were identified.
Methods: Affymetrix microarray analysis on both wildtype (WT) and IL10-KO mice orally administered with and without the probiotic VSL#3 was performed and the results validated by real-time polymerase chain reaction (PCR), immunocytochemistry, proteomics, and histopathology. Changes in metabolically active bacteria were assessed with denaturing gradient gel electrophoresis (DGGE).
Results: Inflammation in IL10-KO mice was characterized by differential regulation of inflammatory, nuclear receptor, lipid, and xenobiotic signaling pathways. Probiotic intervention resulted in downregulation of CXCL9 (fold change [FC] = -3.98, false discovery rate [FDR] = 0.019), CXCL10 (FC = -4.83, FDR = 0.0008), CCL5 (FC -3.47 FDR = 0.017), T-cell activation (Itgal [FC = -4.72, FDR = 0.00009], Itgae [FC = -2.54 FDR = 0.0044]) and the autophagy gene IRGM (FC = -1.94, FDR = 0.01), a recently identified susceptibility gene in human IBD. Consistent with a marked reduction in integrins, probiotic treatment decreased the number of CCL5+ CD3+ double-positive T Cells and upregulated galectin2, which triggers apoptosis of activated T cells. Importantly, genes associated with lipid and PPAR signaling (PPAR alpha [FC = 2.36, FDR = 0.043], PPARGC1 alpha [FC 2.58, FDR = 0.016], Nrld2 [FC = 3.11, FDR = 0.0067]) were also upregulated. Altered microbial diversity was noted in probiotic-treated mice.
Conclusions: Bioinformatics analysis revealed important immune response. phagocytic and inflammatory pathways dominated by elevation of T-helper cell 1 type (TH1) transcription factors in IL10-KO mice. Probiotic intervention resulted in a site-specific reduction of these pathways but importantly upregulated PPAR, xenobiotic, and lipid signaling genes. potential antagonists of NF-kappa B inflammatory pathways.
Resumo:
Purpose: The role of genetic susceptibility to esophageal adenocarcinorna and its precursor lesion Barrett esophagus has not been fully elucidated. This study investigated the effect of polymorphisms in the manganese superoxide dismutase (MnSOD) and NAD(P)H:quinone oxicloreductase 1 (NQO1) genes in modulating the risk of developing Barrett esophagus or esophageal adenocarcinoma. Methods: A total of 584 patients (146 esophagitis, 200 Barrett esophagus, 144 esophageal adenocarcinoma, and 94 controls) were genotyped for the MnSOD C14T and NQO1 C609T polymorphisms using polymerase chain reaction and restriction fragment length polymorphism analysis. Results: The NQO1 TT genotype was less common in Barrett esophagus (2.0%) and esophageal adenocarcinoma (1.4%) patients, compared with both esophagitis patients (7.6%) and controls (5.4%). After adjustment for sex, age, body mass index, reflux symptoms, and smoking status, patients with the homozygous TT genotype had a 4.5-fold decreased risk of developing Barrett esophagus (odds ratio = 0.22, 95% confidence interval = 0.07-0.76, P = 0.01) and a 6.2-fold decreased risk of esophageal adenocarcinorna (odds ratio = 0.16, 95% confidence intervals = 0.03-0.94, P = 0.04) compared with individuals with the TC and CC genotypes. No significant differences between groups were observed for the MnSOD polymorphism (P = 0.289). Conclusions: Overall, the results of this study suggest that the NQO1 TT genotype may offer protection from reflux complications such as Barrett esophagus and esophageal adenocarcinoma.