963 resultados para cell cycle protein
Resumo:
We present here a dynamic model of functional equilibrium between keratinocyte stem cells, transit amplifying populations and cells that are reversibly versus irreversibly committed to differentiation. According to this model, the size of keratinocyte stem cell populations can be controlled at multiple levels, including relative late steps in the sequence of events leading to terminal differentiation and by the influences of a heterogeneous extra-cellular environment. We discuss how work in our laboratory, on the interconnection between the cyclin/CDK inhibitor p21WAF1/Cip1 and the Notch1 signaling pathways, provides strong support to this dynamic model of stem cell versus committed and/or differentiated keratinocyte populations.
Resumo:
BACKGROUND: The purpose of this study was to explore the potential use of image analysis on tissue sections preparation as a predictive marker of early malignant changes during squamous cell (SC) carcinogenesis in the esophagus. Results of DNA ploidy quantification on formalin-fixed, paraffin-embedded tissue using two different techniques were compared: imprint-cytospin and 6 microm thick tissue sections preparation. METHODS: This retrospective study included 26 surgical specimens of squamous cell carcinoma (SCC) from patients who underwent surgery alone at the Department of Surgery in CHUV Hospital in Lausanne between January 1993 and December 2000. We analyzed 53 samples of healthy tissue, 43 tumors and 7 lymph node metastases. RESULTS: Diploid DNA histogram patterns were observed in all histologically healthy tissues, either distant or proximal to the lesion. Aneuploidy was observed in 34 (79%) of 43 carcinomas, namely 24 (75%) of 32 early squamous cell carcinomas and 10 (91%) of 11 advanced carcinomas. DNA content was similar in the different tumor stages, whether patients presented with single or multiple synchronous tumors. All lymph node metastases had similar DNA content as their primary tumor. CONCLUSIONS: Early malignant changes in the esophagus are associated with alteration in DNA content, and aneuploidy tends to correlate with progression of invasive SCC. A very good correlation between imprint-cytospin and tissue section analysis was observed. Although each method used here showed advantages and disadvantages; tissue sections preparation provided useful information on aberrant cell-cycle regulation and helped select the optimal treatment for the individual patient along with consideration of other clinical parameters.
Resumo:
Persistence in canine distemper virus (CDV) infection is correlated with very limited cell-cell fusion and lack of cytolysis induced by the neurovirulent A75/17-CDV compared to that of the cytolytic Onderstepoort vaccine strain. We have previously shown that this difference was at least in part due to the amino acid sequence of the fusion (F) protein (P. Plattet, J. P. Rivals, B. Zuber, J. M. Brunner, A. Zurbriggen, and R. Wittek, Virology 337:312-326, 2005). Here, we investigated the molecular mechanisms of the neurovirulent CDV F protein underlying limited membrane fusion activity. By exchanging the signal peptide between both F CDV strains or replacing it with an exogenous signal peptide, we demonstrated that this domain controlled intracellular and consequently cell surface protein expression, thus indirectly modulating fusogenicity. In addition, by serially passaging a poorly fusogenic virus and selecting a syncytium-forming variant, we identified the mutation L372W as being responsible for this change of phenotype. Intriguingly, residue L372 potentially is located in the helical bundle domain of the F(1) subunit. We showed that this mutation drastically increased fusion activity of F proteins of both CDV strains in a signal peptide-independent manner. Due to its unique structure even among morbilliviruses, our findings with respect to the signal peptide are likely to be specifically relevant to CDV, whereas the results related to the helical bundle add new insights to our growing understanding of this class of F proteins. We conclude that different mechanisms involving multiple domains of the neurovirulent A75/17-CDV F protein act in concert to limit fusion activity, preventing lysis of infected cells, which ultimately may favor viral persistence.
Resumo:
Mouse mammary tumor virus (MMTV) infection of adult mice induces a strong response to superantigen (Sag) in their draining lymph nodes, which results from the presentation of Sag by MMTV-infected B cells to Sag-reactive T cells. To date, infection with physiologically relevant doses of MMTV can be detected in vivo only after several days of Sag-mediated T-cell-dependent amplification of infected B cells. Furthermore, no efficient in vitro system of detecting MMTV infection is available. Such a model would allow the dissection of the early phase of infection, the assessment of the contributions of different cell types, and the screening of large panels of molecules for their potential roles in infection and Sag response. For these reasons, we have established an in vitro model for detecting infection which is as sensitive and reproducible as the in vivo model. We found that the viral envelope (Env) protein is crucial for target cell infection but not for presentation of Sag. Furthermore, we show that infection of purified B cells with MMTV induces entry of Sag-responsive T cells into the cell cycle, while other professional antigen-presenting cells, such as dendritic cells, are much less efficient in inducing a response.
Resumo:
The HeCo mouse model is characterized by a subcortical heterotopia formed by misplaced neurons normally migrating into the superficial cortical layers. The mutant mouse has a tendency to epileptic seizures. In my thesis project we discovered the mutated Eml1 gene, a member of the echinoderm microtubule-associated protein (EMAP) family, in HeCo as well as in a family of three children showing complex malformation of cortical development. This discovery formed an important step in exploring the pathogenic mechanisms underlying the HeCo phenotype. In vitro results showed that during cell division the EML1 protein is associated with the midbody and a mutated version of Eml1 highlighted an important role of the protein in the astral MT array during cell cycle. In vivo, we found that already at an early age of cortical development (E13), ectopic progenitors such as RGs (PAX6) and IPCs (TBR2) accumulate in the IZ along the entire neocortex. We demonstrated that in the VZ of the HeCo mouse, spindle orientation and cell cycle exit are perturbed. In later stages (E17), RG fibers are strongly disorganized with deep layer (TBR1) and upper layer (CUX1) neurons trapped within an ectopic mass. At P3, columns of upper layer neurons were present between the heterotopia and the developing cortex; these columns were also present at P7 but at lesser extent. Time lapse video recording (E15.5) revealed that the parameters characterizing the migration of individual neurons are not disturbed in HeCo; however, this analysis showed that the density of migrating neuron was smaller in HeCo. In conclusion, truncated EML1 is likely to play a prominent role during cell cycle but also acts on the cytoskeletal architecture altering the shape of RG fibers thus influencing the pattern of neuronal migration. The signal transduction between external cues and intracellular effector pathways through MTs may be secondary but sustains the heterotopia development and further studies are needed to clarify the impact of EML1 in progenitors versus post-mitotic cells.
Resumo:
ViralZone (http://viralzone.expasy.org) is a knowledge repository that allows users to learn about viruses including their virion structure, replication cycle and host-virus interactions. The information is divided into viral fact sheets that describe virion shape, molecular biology and epidemiology for each viral genus, with links to the corresponding annotated proteomes of UniProtKB. Each viral genus page contains detailed illustrations, text and PubMed references. This new update provides a linked view of viral molecular biology through 133 new viral ontology pages that describe common steps of viral replication cycles shared by several viral genera. This viral cell-cycle ontology is also represented in UniProtKB in the form of annotated keywords. In this way, users can navigate from the description of a replication-cycle event, to the viral genus concerned, and the associated UniProtKB protein records.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. These receptors stimulate transcription after activation by their cognate ligand and binding to the promoter of target genes. In this review, we discuss how fatty acids affect PPAR functions in the cell. We first describe the structural features of the ligand binding domains of PPARs, as defined by crystallographic analyses. We then present the ligand-binding characteristics of each of the three PPARs (alpha, beta/delta, gamma) and relate ligand activation to various cellular processes: (i) fatty acid catabolism and modulation of the inflammatory response for PPARalpha, (ii) embryo implantation, cell proliferation and apoptosis for PPARbeta, and (iii) adipocytic differentiation, monocytic differentiation and cell cycle withdrawal for PPARgamma. Finally, we present possible cross-talk between the PPAR pathway and different endocrine routes within the cell, including the thyroid hormone and retinoid pathways.
Resumo:
Intrathymic T-cell maturation critically depends on the selective expansion of thymocytes expressing a functionally rearranged T-cell receptor (TCR) beta chain. In addition, TCR-independent signals also contribute to normal T-cell development. It is unclear whether and how signals from the 2 types of pathways are integrated. Here, we show that T-cell factor-1 (TCF-1), a nuclear effector of the canonical wingless/int (wnt)/catenin signaling pathway, ensures the survival of proliferating, pre-TCR(+) thymocytes. The survival of pre-TCR(+) thymocytes requires the presence of the N-terminal catenin-binding domain in TCF-1. This domain can bind the transcriptional coactivator beta-catenin and may also bind gamma-catenin (plakoglobin). However, in the absence of gamma-catenin, T-cell development is normal, supporting a role for beta-catenin. Signaling competent beta-catenin is present prior to and thus arises independently from pre-TCR signaling and does not substantially increase on pre-TCR signaling. In contrast, pre-TCR signaling significantly induces TCF-1 expression. This coincides with the activation of a wnt/catenin/TCF reporter transgene in vivo. Collectively, these data suggest that efficient TCF-dependent transcription requires that pre-TCR signaling induces TCF-1 expression, whereas wnt signals may provide the coactivator such as beta-catenin. The 2 pathways thus have to cooperate to ensure thymocyte survival at the pre-TCR stage.
Resumo:
DNA double strand breaks (DSBs) are mainly repaired via homologous recombination (HR) or nonhomologous end joining (NHEJ). These breaks pose severe threats to genome integrity but can also be necessary intermediates of normal cellular processes such as immunoglobulin class switch recombination (CSR). During CSR, DSBs are produced in the G1 phase of the cell cycle and are repaired by the classical NHEJ machinery. By studying B lymphocytes derived from patients with Cornelia de Lange Syndrome, we observed a strong correlation between heterozygous loss-of-function mutations in the gene encoding the cohesin loading protein NIPBL and a shift toward the use of an alternative, microhomology-based end joining during CSR. Furthermore, the early recruitment of 53BP1 to DSBs was reduced in the NIPBL-deficient patient cells. Association of NIPBL deficiency and impaired NHEJ was also observed in a plasmid-based end-joining assay and a yeast model system. Our results suggest that NIPBL plays an important and evolutionarily conserved role in NHEJ, in addition to its canonical function in sister chromatid cohesion and its recently suggested function in HR.
Resumo:
Understanding the molecular aberrations involved in the development and progression of metastatic melanoma (MM) is essential for a better diagnosis and targeted therapy. We identified breast cancer suppressor candidate-1 (BCSC-1) as a novel tumor suppressor in melanoma. BCSC-1 expression is decreased in human MM, and its ectopic expression in MM-derived cell lines blocks tumor formation in vivo and melanoma cell proliferation in vitro while increasing cell migration. We demonstrate that BCSC-1 binds to Sox10, which down regulates MITF, and results in a switch of melanoma cells from a proliferative to a migratory phenotype. In conclusion, we have identified BCSC-1 as a tumor suppressor in melanoma and as a novel regulator of the MITF pathway.
Resumo:
Background: Mantle cell lymphoma (MCL) is genetically characterized by the t(11;14)(q13;q32) translocation and a high number of secondary chromosomal alterations. The contribution of DNA methylation to MCL lymphomagenesis is not well known. We sought to identify epigenetically silenced genes in these tumours that might have clinical relevance. Methodology/Principal Findings: To identify potential methylated genes in MCL we initially investigated seven MCL cell lines treated with epigenetic drugs and gene expression microarray profiling. The methylation status of selected candidate genes was validated by a quantitative assay and subsequently analyzed in a series of primary MCL (n=38). After pharmacological reversion we identified 252 potentially methylated genes. The methylation analysis of a subset of these genes (n=25) in the MCL cell lines and normal B lymphocytes confirmed that 80% of them were methylated in the cell lines but not in normal lymphocytes. The subsequent analysis in primary MCL identified five genes (SOX9,HOXA9,AHR,NR2F2 ,and ROBO1) frequently methylated in these tumours. The gene methylation events tended to occur in the same primary neoplasms and correlated with higher proliferation, increased number of chromosomal abnormalities, and shorter survival of the patients. Conclusions: We have identified a set of genes whose methylation degree and gene expression levels correlate with aggressive clinicopathological features of MCL. Our findings also suggest that a subset of MCL might show a CpG island methylator phenotype (CIMP) that may influence the behaviour of the tumours.
Resumo:
Abstract: The fission yeast Schizosaccharomyces pombe has proven to be an excellent model system for the study of eukaryotic cell cycle control. S. pombe cells are rod-shaped and grow mainly by elongation at their tips. They divide by the means of a centrallyplaced division septum which provides two daughter cells of equal size. S. pombe cytokinesis begins at mitotic entry, when the division site is defined by formation of the contractile acto-myosin ring (CAR). Formation of the division septum is triggered at the end of mitosis by the spindle pole body (SPB) associated septation initiation network (SIN) proteins. SIN signalling requires activation of the GTPase spg1p, whose nucleotide status is regulated by the bipartite GAP byr4pcdc16p. Removal of cdc16p from the SPB during early mitosis is thought to allow priming of the SIN by association of cdc7p with both SPBs. During anaphase cdc7p is retained on the new SPB, which also recruits the kinase sid1 p and cdc14p, while the old SP8 reassembles the byr4-cdc16p GAP and is presumed not to signal; SPB asymmetry persists throughout anaphase. The trigger for inactivation of SIN signalling at the new SPB is unknown. This study has concentrated upon cdc16p. We have undertaken the analysis of the localisation of cdc16p using time-lapse microscopy. We have observed that the localisation of cdc16p is regulated at different transitions. We have shown that cdc16p is removed from the SPB prior to the onset of spindle formation and that it reappears asymmetrically at the beginning of anaphase B. We have also demonstrated that the resetting of the SIN at the new SPB is linked to completion of CAR contraction and septum formation. We propose the existence of a mechanism that monitors cytokinesis and that couples the activity of the SI N with the presence of the CAR. During the biochemical characterization of cdc16p, We have found that it is an unstable protein and that it is subjected to polyubiquitination by the SCF and proteasomal degradation. Together, these observations help to shed new light upon the mechanisms by which cytokinesis is regulated in S. pombe. Résumé: La levure Schizosaccharomyces pombe est un excellent organisme modèle pour l'étude du cycle cellulaire eucaryote. Les cellules S. pombe ont la forme de bâtonnets et croissent par l'allongement de leurs extrémités. Elles se divisent en formant, en leur milieu une paroi cellulaire, appelé septum, permettant ainsi l'obtention de deux cellules filles de même taille. Chez S. pombe, la cytokinèse commence en début de mitose lorsque le site de division est déterminé par la formation d'un anneau d'acto-myosine. Le septum, lui, est formé uniquement en fin de mitose par la contraction de l'anneau d'actomyosine. Cette contraction est sous le contrôle d'un réseau de signalisation cellulaire appelé le «réseau d'initiation de synthèse du septum » ou « septation initiation network » (SIN), qui se situe sur les pôles du fuseau mitotique. L'activation du SIN dépend d'une GTPase appelé spg1p dont le statut nucléotidique dépend des protéines cdclóp et byr4p qui forment un complexe qui favorise l'hydrolyse du GTP en GDP. En début de mitose, cdc16p ne se situe plus sur les poles du fuseau mitotique. La GTPase spg1p se retrouve donc principalement sous sa forme couplée au GTP, ce quí va permettre son interaction avec la kinase cdc7p. Cette protéine ainsi que deux autres kinases sid2p (avec mob1p) et sid1p (avec cdc14p) permettent la transmission du signal d'initiation de la contraction de l'anneau d'acto-myosine en fin d'anaphase. Pendant l'anaphase, cdc7p, sid1 p et cdc14p localisent sur un des deux pôles du fuseau mitotique. Il en est de même pour cdc1p et by14p et le pôle contenant cdc16p et byr4p est toujours différent de celui ou les régulateurs positifs du SIN se situent. En fin de cytokinèse, cdc16 et byr4p se retrouvent à nouveau sur chaque pôle des deux cellules filles. Dans cette étude, nous nous sommes concentrés sur l'analyse de la localisation de cdc16p pendant la mitose en utilisant une technique de microscopie en temps réel. Nous avons été en mesure de déterminer que le départ de cdc16p du pole s'effectue juste avant la formation du fuseau mitotique. Nous avons aussi découvert que la localisation asymétrique des composants du SIN dépend fortement de l'entrée en anaphase B. Finalement, Nous avons montré que distribution asymétrique des composants du SIN sur les pôles du fuseau mitotique dépendait aussi fortement de !a présence de l'anneau d'acto-myosine. Ceci nous permet donc de proposer l'existence d'un mécanisme cellulaire qui permet de s'assurer que la cytokinèse est achevée avant de diminuer la signalisation du SIN. Par ailleurs, des études biochimiques nous ont permis de montrer que cdc16p est dégradé par le proteosome. Ces travaux ont permis la découverte de nouveaux modes de régulation du SIN.
Resumo:
Here, we identify a role for the matrilin-2 (Matn2) extracellular matrix protein in controlling the early stages of myogenic differentiation. We observed Matn2 deposition around proliferating, differentiating and fusing myoblasts in culture and during muscle regeneration in vivo. Silencing of Matn2 delayed the expression of the Cdk inhibitor p21 and of the myogenic genes Nfix, MyoD and Myog, explaining the retarded cell cycle exit and myoblast differentiation. Rescue of Matn2 expression restored differentiation and the expression of p21 and of the myogenic genes. TGF-β1 inhibited myogenic differentiation at least in part by repressing Matn2 expression, which inhibited the onset of a positive-feedback loop whereby Matn2 and Nfix activate the expression of one another and activate myoblast differentiation. In vivo, myoblast cell cycle arrest and muscle regeneration was delayed in Matn2(-/-) relative to wild-type mice. The expression levels of Trf3 and myogenic genes were robustly reduced in Matn2(-/-) fetal limbs and in differentiating primary myoblast cultures, establishing Matn2 as a key modulator of the regulatory cascade that initiates terminal myogenic differentiation. Our data thus identify Matn2 as a crucial component of a genetic switch that modulates the onset of tissue repair.
Resumo:
Stathmin is a regulator of microtubule dynamics which undergoes extensive phosphorylation during the cell cycle as well as in response to various extracellular factors. Four serine residues are targets for protein kinases: Ser-25 and Ser-38 for proline-directed kinases such as mitogen-activated protein kinase and cyclin-dependent protein kinase, and Ser-16 and Ser-63 for cAMP-dependent protein kinase. We studied the effect of phosphorylation on the microtubule-destabilizing activity of stathmin and on its interaction with tubulin in vitro. We show that triple phosphorylation on Ser-16, Ser-25, and Ser-38 efficiently inhibits its activity and prevents its binding to tubulin.
Resumo:
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.