904 resultados para calibration of rainfall-runoff models
Resumo:
In this work, the relationship between diameter at breast height (d) and total height (h) of individual-tree was modeled with the aim to establish provisory height-diameter (h-d) equations for maritime pine (Pinus pinaster Ait.) stands in the Lomba ZIF, Northeast Portugal. Using data collected locally, several local and generalized h-d equations from the literature were tested and adaptations were also considered. Model fitting was conducted by using usual nonlinear least squares (nls) methods. The best local and generalized models selected, were also tested as mixed models applying a first-order conditional expectation (FOCE) approximation procedure and maximum likelihood methods to estimate fixed and random effects. For the calibration of the mixed models and in order to be consistent with the fitting procedure, the FOCE method was also used to test different sampling designs. The results showed that the local h-d equations with two parameters performed better than the analogous models with three parameters. However a unique set of parameter values for the local model can not be used to all maritime pine stands in Lomba ZIF and thus, a generalized model including covariates from the stand, in addition to d, was necessary to obtain an adequate predictive performance. No evident superiority of the generalized mixed model in comparison to the generalized model with nonlinear least squares parameters estimates was observed. On the other hand, in the case of the local model, the predictive performance greatly improved when random effects were included. The results showed that the mixed model based in the local h-d equation selected is a viable alternative for estimating h if variables from the stand are not available. Moreover, it was observed that it is possible to obtain an adequate calibrated response using only 2 to 5 additional h-d measurements in quantile (or random) trees from the distribution of d in the plot (stand). Balancing sampling effort, accuracy and straightforwardness in practical applications, the generalized model from nls fit is recommended. Examples of applications of the selected generalized equation to the forest management are presented, namely how to use it to complete missing information from forest inventory and also showing how such an equation can be incorporated in a stand-level decision support system that aims to optimize the forest management for the maximization of wood volume production in Lomba ZIF maritime pine stands.
Resumo:
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Resumo:
Soil erosion data in El Salvador Republic are scarce and there is no rainfall erosivity map for this region. Considering that rainfall erosivity is an important guide for planning soil erosion control practices, a spatial assessment of indices for characterizing the erosive force of rainfall in El Salvador Republic was carried out. Using pluviometric records from 25 weather stations, we applied two methods: erosivity index equation and the Fournier index. In all study area, the rainiest period is from May to November. Annual values of erosivity index ranged from 7,196 to 17,856 MJ mm ha(-1) h(-1) year(-1) and the Fournier index ranged from 52.9 to 110.0 mm. The erosivity map showed that the study area can be broadly divided into three major erosion risk zones, and the Fournier index map was divided into four zones. Both methods revealed that the erosive force is severe in all study area and presented significant spatial correlation with each other. The erosive force in the country is concentrated mainly from May to November.
Resumo:
O estudo foi efetuado durante o período de chuva (dezembro-fevereiro) em seis viveiros de produção semi-intensiva de peixes, a fim de avaliar o efeito da chuva na qualidade da água de viveiros que apresentam fluxo contínuo de água, a qual é passada de um viveiro para outro sem tratamento prévio. Foram amostrados oito pontos de coleta nas saídas dos viveiros. O viveiro P1 (próximo à nascente) apresentou as menores concentrações físicas e químicas da água e as maiores no viveiro P4 (considerado um ponto crítico recebendo material alóctone proveniente de outros viveiros e do escoamento do setor de criação de rãs). A disposição seqüencial dos viveiros estudados promoveu aumento nas concentrações dos nutrientes, clorofila-a e condutividade. As chuvas características desta época do ano aumentaram o fluxo de água nos viveiros e conseqüentemente, carreando material particulado e dissolvido de um viveiro para outro e, promovendo um aumento das variáveis limnológicas em direção do P3 ao P6. Os resultados sugerem que a chuva no período de estudo afetou positivamente a qualidade da água dos viveiros estudados, porém, como os sistemas analisados estão dispostos em distribuição seqüencial e escoamento constante da água de viveiros e tanques paralelos sem tratamento prévio, cuidados devem ser averiguados para que o aumento do fluxo de água provocado pelas chuvas não tenha efeito adverso nos viveiros estudados.
Resumo:
The International Space Station (ISS) requires a substantial amount of potable water for use by the crew. The economic and logistic limitations of transporting the vast amount of water required onboard the ISS necessitate onboard recovery and reuse of the aqueous waste streams. Various treatment technologies are employed within the ISS water processor to render the waste water potable, including filtration, ion exchange, adsorption, and catalytic wet oxidation. The ion exchange resins and adsorption media are combined in multifiltration beds for removal of ionic and organic compounds. A mathematical model (MFBMODEL™) designed to predict the performance of a multifiltration (MF) bed was developed. MFBMODEL consists of ion exchange models for describing the behavior of the different resin types in a MF bed (e.g., mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins) and an adsorption model capable of predicting the performance of the adsorbents in a MF bed. Multicomponent ion exchange ii equilibrium models that incorporate the water formation reaction, electroneutrality condition, and degree of ionization of weak acids and bases for mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins were developed and verified. The equilibrium models developed use a tanks-inseries approach that allows for consideration of variable influent concentrations. The adsorption modeling approach was developed in related studies and application within the MFBMODEL framework was demonstrated in the Appendix to this study. MFBMODEL consists of a graphical user interface programmed in Visual Basic and Fortran computational routines. This dissertation shows MF bed modeling results in which the model is verified for a surrogate of the ISS waste shower and handwash stream. In addition, a multicomponent ion exchange model that incorporates mass transfer effects was developed, which is capable of describing the performance of strong acid cation (SAC) and strong base anion (SBA) exchange resins, but not including reaction effects. This dissertation presents results showing the mass transfer model's capability to predict the performance of binary and multicomponent column data for SAC and SBA exchange resins. The ion exchange equilibrium and mass transfer models developed in this study are also applicable to terrestrial water treatment systems. They could be applied for removal of cations and anions from groundwater (e.g., hardness, nitrate, perchlorate) and from industrial process waters (e.g. boiler water, ultrapure water in the semiconductor industry).
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Resumo:
Distribution models are used increasingly for species conservation assessments over extensive areas, but the spatial resolution of the modeled data and, consequently, of the predictions generated directly from these models are usually too coarse for local conservation applications. Comprehensive distribution data at finer spatial resolution, however, require a level of sampling that is impractical for most species and regions. Models can be downscaled to predict distribution at finer resolutions, but this increases uncertainty because the predictive ability of models is not necessarily consistent beyond their original scale. We analyzed the performance of downscaled, previously published models of environmental favorability (a generalized linear modeling technique) for a restricted endemic insectivore, the Iberian desman (Galemys pyrenaicus), and a more widespread carnivore, the Eurasian otter ( Lutra lutra), in the Iberian Peninsula. The models, built from presence–absence data at 10 × 10 km resolution, were extrapolated to a resolution 100 times finer (1 × 1 km). We compared downscaled predictions of environmental quality for the two species with published data on local observations and on important conservation sites proposed by experts. Predictions were significantly related to observed presence or absence of species and to expert selection of sampling sites and important conservation sites. Our results suggest the potential usefulness of downscaled projections of environmental quality as a proxy for expensive and time-consuming field studies when the field studies are not feasible. This method may be valid for other similar species if coarse-resolution distribution data are available to define high-quality areas at a scale that is practical for the application of concrete conservation measures
Resumo:
Transferring distribution models between different geographical areas may be problematic, as the performance of models outside their original scope is hard to predict. A modelling procedure is needed that gets the gist of the environmental descriptors of a distribution area, without either overfitting to the training data or overestimating the species’ distribution potential.We tested the transferability power of the favourability function, a generalized linear model, on the distribution of the Iberian desman (Galemys pyrenaicus) in the Iberian territories of Portugal and Spain.We also tested the effects of two of the main potential constraints on model transferability: the analysed ranges of the predictor variables, and the completeness of the species distribution data. We modelled 10 km×10km presence/absence data from Portugal and Spain separately, extrapolated each model to the other country, and compared predictions with observations. The Spanish model, despite arguably containing more false absences, showed good predictive ability in Portugal. The Portuguese model, whose predictors ranged between only a subset of the values observed in Spain, overestimated desman distribution when transferred.We discuss possible reasons for this differential model behaviour, and highlight the importance of this kind of models for prediction and conservation applications
Resumo:
Accurate assessment of standing pasture biomass in livestock production systems is a major factor for improving feed planning. Several tools are available to achieve this, including the GrassMaster II capacitance meter. This tool relies on an electrical signal, which is modified by the surrounding pasture. There is limited knowledge on how this capacitance meter performs in Mediterranean pastures. Therefore, we evaluated the GrassMaster II under Mediterranean conditions to determine (i) the effect of pasture moisture content (PMC) on the meter’s ability to estimate pasture green matter (GM) and dry matter (DM) yields, and (ii) the spatial variability and temporal stability of corrected meter readings (CMR) and DM in a bio-diverse pasture. Field tests were carried out with typical pastures of the southern region of Portugal (grasses, legumes, mixture and volunteer annual species) and at different phenological stages (and different PMC). There were significant positive linear relations between CMR and GM (r2 = 0.60, P < 0.01) and CMR and DM (r2 = 0.35, P < 0.05) for all locations (n = 347). Weak relationships were found for PMC (%) v. slope and coefficient of determination for both GM and DM. A significant linear relation existed for CMR v. GM and DM for PMC >80% (r2= 0.57, P < 0.01, RMSE = 2856.7 kg ha–1, CVRMSE=17.1% to GM; and r2= 0.51, P < 0.01,RMSE = 353.7 kg ha–1, CVRMSE = 14.3% to DM). Therefore, under the conditions of this current study there exists an optimum PMC (%) for estimating both GM and DM with the GrassMaster II. Repeated-measurements taken at the same location on different dates and conditions in a bio-diverse pasture showed similar and stable patterns between CMR and DM (r2= 0.67, P < 0.01, RMSE = 136.1 kg ha–1, CVRMSE = 6.5%). The results indicate that the GrassMaster II in-situ technique could play a crucial role in assessing pasture mass to improve feed planning under Mediterranean conditions.
Resumo:
2016
Resumo:
Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.
Resumo:
A novel methodology for describing genotype by environment interactions estimated from multi-environment field trials is described and an empirical example using an extensive trial network of eucalypts is presented. The network of experiments containing 65 eucalypts was established in 38 replicated field trials across the tropics and subtropics of eastern Australia, with a selection of well-tested species used to provide a more detailed examination of productivity differentials across environmental gradients. By focusing on changes in species’ productivity across environmental gradients, the results are applicable for all species established across the range of environments evaluated in the trial network and simultaneously classify species and environments so that results may be applied across the landscape. The methodology developed was able to explain most (93 %) of the variation in the selected species relative changes in productivity across the various environmental variables examined. Responses were primarily regulated by changes in variables related to water availability and secondarily by temperature related variables. Clustering and ordination can identify groups of species with similar physiological responses to environment and may also guide the parameterisation and calibration of process based models of plant growth. Ordination was particularly useful in the identification of species with distinct environmental response patterns that would be useful as probes for extracting more information from future trials.
Resumo:
降雨径流的调控利用是缓解黄土高原干旱缺水与控制水土流失的有效手段,研究区域降雨径流调控利用潜力的定量评价对黄土高原降雨径流合理利用的宏观决策与规划设计具有重要意义。以黄土高原为例,将可以调控利用的最大降雨径流量作为资源化潜力值,从宏观尺度上,系统分析了影响该潜力的各个因素,确定出黄土高原降雨径流调控利用潜力的各项评价指标,利用GIS技术,建立了降雨径流各个影响因素的专题图层,提取出各个影响因素专题信息。在上述基础上,引入人工神经网络建模方法,建立了黄土高原降雨径流调控利用潜力BP网络模型,并利用实际资料对网络模型进行了训练和预测,取得了较好的结果。评价模型可供黄土高原降雨径流调控利用及其生态与环境保护工作参考。
Resumo:
基于黄土坡面降雨—径流关系的复杂性且非线性特性,引用3层前馈型BP网络模型,对不同土地利用方式(草灌地、刈割地、翻耕地)径流量进行模拟,以植被盖度、降雨强度、坡度、土壤前期含水率和土壤容重5个因子作为输入层变量,次降雨下径流量作为输出层变量,并利用野外人工模拟降雨试验所得到不同降雨强度下各类土地利用径流小区的径流量实测资料,对网络进行模拟训练和预测,取得了较好的结果,平均误差不超过10%。研究结果表明,与传统回归统计方法进行了误差比较,该模型的预测精度更高。
Resumo:
Os sistemas de monitorização de estruturas fornecem diversas vantagens, não só no que diz respeito à durabilidade da obra, ao aumento da segurança e do conhecimento relativamente ao comportamento das estruturas ao longo do tempo, à otimização do aspeto estrutural, bem como aos aspetos económicos do processo de construção e manutenção. A monitorização deve realizar-se durante a fase de construção e/ou de exploração da obra para permitir o registo integral do seu comportamento no meio externo. Deve efetuar-se de forma contínua e automática, executando intervenções de rotina para que se possa detetar precocemente sinais de alterações, respetivamente à segurança, integridade e desempenho funcional. Assim se poderá manter a estrutura dentro de parâmetros aceitáveis de segurança. Assim, na presente dissertação será concebido um demonstrador experimental, para ser estudado em laboratório, no qual será implementado um sistema de monitorização contínuo e automático. Sobre este demonstrador será feita uma análise de diferentes grandezas em medição, tais como: deslocamentos, extensões, temperatura, rotações e acelerações. Com carácter inovador, pretende-se ainda incluir neste modelo em sintonia de medição de coordenadas GNSS com o qual se torna possível medir deslocamentos absolutos. Os resultados experimentais alcançados serão analisados e comparados com modelos numéricos. Conferem-se os resultados experimentais de natureza estática e dinâmica, com os resultados numéricos de dois modelos de elementos finitos: um de barras e outro de casca. Realizaram-se diferentes abordagens tendo em conta as características identificadas por via experimental e calculadas nos modelos numéricos para melhor ajuste e calibração dos modelos numéricos Por fim, recorre-se a algoritmos de processamento e tratamento do respetivo sinal com aplicação de filtros, que revelam melhorar com rigor o sinal, de forma a potenciar as técnicas de fusão multisensor. Pretende-se integrar o sinal GNSS com os demais sensores presentes no sistema de monitorização. As técnicas de fusão multisensor visam melhor o desempenho deste potencial sistema de medição, demonstrando as suas valências no domínio da monitorização estrutural.