996 resultados para brain third ventricle
Resumo:
Pantomimes of object use require accurate representations of movements and a selection of the most task-relevant gestures. Prominent models of praxis, corroborated by functional neuroimaging studies, predict a critical role for left parietal cortices in pantomime and advance that these areas store representations of tool use. In contrast, lesion data points to the involvement of left inferior frontal areas, suggesting that defective selection of movement features is the cause of pantomime errors. We conducted a large-scale voxel-based lesion-symptom mapping analyses with configural/spatial (CS) and body-part-as-object (BPO) pantomime errors of 150 left and right brain-damaged patients. Our results confirm the left hemisphere dominance in pantomime. Both types of error were associated with damage to left inferior frontal regions in tumor and stroke patients. While CS pantomime errors were associated with left temporoparietal lesions in both stroke and tumor patients, these errors appeared less associated with parietal areas in stroke than in tumor patients and less associated with temporal in tumor than stroke patients. BPO errors were associated with left inferior frontal lesions in both tumor and stroke patients. Collectively, our results reveal a left intrahemispheric dissociation for various aspects of pantomime, but with an unspecific role for inferior frontal regions.
Resumo:
To link the presence of intrathecal virus-specific oligoclonal immunoglobulin G (IgG) in multiple sclerosis patients to a demyelinating activity, aggregating rat brain cell cultures were treated with antibodies directed against two viruses, namely, rubella (RV) and hepatitis B (HB). Anti-RV antibodies in the presence of complement decreased myelin basic protein concentrations in a dose-dependent manner, whereas anti-HB antibodies had no effect. A similar but less pronounced effect was observed on the enzymatic activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase, which is enriched in noncompact membranes of oligodendrocytes. These effects were comparable to those in cultures treated with antibodies directed against myelin oligodendrocyte glycoprotein (MOG), previously found to be myelinotoxic both in vitro and in vivo. Sequence homologies were found between structural glycoprotein E(2) of RV and MOG, suggesting that demyelination was due to molecular mimicry. To support the hypothesis that demyelination was caused by anti-RV IgG that recognized an MOG epitope, we found that anti-RV antibodies depleted MOG in a dose-dependent manner. Further evidence came from the demonstration that anti-RV and anti-MOG IgG colocalized on oligodendrocyte processes and that both revealed by Western blot a 28 kDa protein in CNS myelin, a molecular weight corresponding to MOG. These findings suggest that a virus such as RV exhibiting molecular mimicry with MOG can trigger an autoimmune demyelination.
Resumo:
Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.
Resumo:
The production of object and action words can be dissociated in aphasics, yet their anatomical correlates have been difficult to distinguish in functional imaging studies. To investigate the extent to which the cortical neural networks underlying object- and action-naming processing overlap, we performed electrostimulation mapping (ESM), which is a neurosurgical mapping technique routinely used to examine language function during brain-tumor resections. Forty-one right-handed patients who had surgery for a brain tumor were asked to perform overt naming of object and action pictures under stimulation. Overall, 73 out of the 633 stimulated cortical sites (11.5%) were associated with stimulation-induced language interferences. These interference sites were very much localized (<1 cm(2) ), and showed substantial variability across individuals in their exact localization. Stimulation interfered with both object and action naming over 44 sites, whereas it specifically interfered with object naming over 19 sites and with action naming over 10 sites. Specific object-naming sites were mainly identified in Broca's area (Brodmann area 44/45) and the temporal cortex, whereas action-naming specific sites were mainly identified in the posterior midfrontal gyrus (Brodmann area 6/9) and Broca's area (P = 0.003 by the Fisher's exact test). The anatomical loci we emphasized are in line with a cortical distinction between objects and actions based on conceptual/semantic features, so the prefrontal/premotor cortex would preferentially support sensorimotor contingencies associated with actions, whereas the temporal cortex would preferentially underpin (functional) properties of objects. Hum Brain Mapp 35:429-443, 2014. © 2012 Wiley Periodicals, Inc.
Resumo:
Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant condition mainly characterized by the development of mandibular keratocysts which often have their onset during the second decade of life and/or multiple basal cell carcinoma (BCC) normally arising during the third decade. Cardiac and ovarian fibromas can be found. Patients with NBCCS develop the childhood brain malignancy medulloblastoma (now often called primitive neuro-ectodermal tumor [PNET]) in 5% of cases. The risk of other malignant neoplasms is not clearly increased, although lymphoma and meningioma can occur in this condition. Wilms tumor has been mentioned in the literature four times. We describe a patient with a 10.9 Mb 9q22.3 deletion spanning 9q22.2 through 9q31.1 that includes the entire codifying sequence of the gene PTCH1, with Wilms tumor, multiple neoplasms (lung, liver, mesenteric, gastric and renal leiomyomas, lung typical carcinoid tumor, adenomatoid tumor of the pleura) and a severe clinical presentation. We propose including leiomyomas among minor criteria of the NBCCS.
Resumo:
Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.
Resumo:
BACKGROUND: Brain α2- and β-adrenoceptor alterations have been suggested in suicide and major depressive disorder. METHODS: The densities of α2-, β1- and β2-adrenoceptors in postmortem prefrontal cortex of 26 subjects with depression were compared with those of age-, gender- and postmortem delay-matched controls. The effect of antidepressant treatment on α2- and β-adrenoceptor densities was also evaluated. α2- and β-adrenoceptor densities were measured by saturation experiments with respective radioligands [(3)H]UK14304 and [(3)H]CGP12177. β1- and β2-adrenoceptor subtype densities were dissected by means of β1-adrenoceptor selective antagonist CGP20712A. RESULTS: Both, α2- and β1-adrenoceptors densities were higher in antidepressant-free depressed subjects (n=14) than those in matched controls (Δ~24%, p=0.013 and Δ~20%, p=0.044, respectively). In antidepressant-treated subjects (n=12), α2-adrenoceptor density remained increased over that in controls (Δ~20%), suggesting a resistance of α2-adrenoceptors to the down-regulatory effect of antidepressants. By contrast, β1-adrenoceptor density in antidepressant-treated depressed subjects was not different from controls, suggesting a possible down-regulation by antidepressants. The down-regulation of β1-adrenoceptor density in antidepressant-treated depressed subjects differs from the unaltered β1-adrenoceptor density observed in citalopram-treated rats and in a group of non-depressed subjects also treated with antidepressants (n=6). β2-adrenoceptor density was not altered in depressed subjects independently of treatment. LIMITATIONS: Antidepressant-treated subjects had been treated with a heterogeneous variety of antidepressant drugs. The results should be understood in the context of suicide victims with depression. CONCLUSIONS: These results show the up-regulation of brain α2- and β1-adrenoceptors in depression and suggest that the regulation induced by chronic antidepressant treatment would be altered in these subjects.
Resumo:
Peri-insular hemispherotomy is a surgical technique used in the treatment of drug-resistant epilepsy of hemispheric origin. It is based on the exposure of insula and semi-circular sulci, providing access to the lateral ventricle through a supra- and infra-insular window. From inside the ventricle, a parasagittal callosotomy is performed. The basal and medial portion of the frontal lobe is isolated. Projections to the anterior commissure are interrupted at the time of amygdala resection. The hippocampal tail and fimbria-fornix are disrupted posteriorly. We report our experience of 18 cases treated with this approach. More than half of them presented with congenital epilepsy. Neuronavigation was useful in precisely determining the center and extent of the craniotomy, as well as the direction of tractotomies and callosotomy, allowing minimal exposure and blood loss. Intra-operative monitoring by scalp EEG on the contralateral hemisphere was used to follow the progression of the number of interictal spikes during the disconnection procedure. Approximately 90% of patients were in Engel's Class I. We observed one case who presented with transient postoperative neurological deterioration probably due to CSF overdrainage and documented one case of incomplete disconnection in a patient presenting with hemimegalencephaly who needed a second operation. We observed a good correlation between a significant decrease in the number of spikes at the end of the procedure and seizure outcome. Peri-insular hemispherotomy provides a functional disconnection of the hemisphere with minimal resection of cerebral tissue. It is an efficient technique with a low complication rate. Intra-operative EEG monitoring might be used as a predictive factor of completeness of the disconnection and consequently, seizure outcome.
Resumo:
OBJECTIVE: Mild neurocognitive disorders (MND) affect a subset of HIV+ patients under effective combination antiretroviral therapy (cART). In this study, we used an innovative multi-contrast magnetic resonance imaging (MRI) approach at high-field to assess the presence of micro-structural brain alterations in MND+ patients. METHODS: We enrolled 17 MND+ and 19 MND- patients with undetectable HIV-1 RNA and 19 healthy controls (HC). MRI acquisitions at 3T included: MP2RAGE for T1 relaxation times, Magnetization Transfer (MT), T2* and Susceptibility Weighted Imaging (SWI) to probe micro-structural integrity and iron deposition in the brain. Statistical analysis used permutation-based tests and correction for family-wise error rate. Multiple regression analysis was performed between MRI data and (i) neuropsychological results (ii) HIV infection characteristics. A linear discriminant analysis (LDA) based on MRI data was performed between MND+ and MND- patients and cross-validated with a leave-one-out test. RESULTS: Our data revealed loss of structural integrity and micro-oedema in MND+ compared to HC in the global white and cortical gray matter, as well as in the thalamus and basal ganglia. Multiple regression analysis showed a significant influence of sub-cortical nuclei alterations on the executive index of MND+ patients (p = 0.04 he and R(2) = 95.2). The LDA distinguished MND+ and MND- patients with a classification quality of 73% after cross-validation. CONCLUSION: Our study shows micro-structural brain tissue alterations in MND+ patients under effective therapy and suggests that multi-contrast MRI at high field is a powerful approach to discriminate between HIV+ patients on cART with and without mild neurocognitive deficits.
Resumo:
Résumé : L'insuline est produite et sécrétée par la cellule ß-pancréatique. Son rôle est de régler le taux de sucre dans le sang. Si ces cellules meurent ou échouent à produire suffisamment de l'insuline, les sujets développent le diabète de type 2 (DT2), une des maladies les plus communes dans les pays développés. L'excès chronique des lipoprotéines LDL oxydés (oxLDL) et/ou des cytokines pro-inflammatoires comme l'interleukine-1ß (IL-1ß) participent au dérèglement et à la mort des cellules ß. Nous avons montré qu'une chute des niveaux d'expression de la protéine nommée «mitogen activated protein kinase 8 interacting protein 1» ou «islet brain 1 (IB 1)» est en partie responsable des effets provoqués par les oxLDL ou IL-1ß. IB1 régule l'expression de l'insuline et la survie cellulaire en inhibant la voie de signalisation « c-jun N-terminal Kinase (JNK)». La réduction des niveaux d'expression d'IB1 provoque l'activation de la voie JNK en réponse aux facteurs environnementaux, et ainsi initie la réduction de l'expression de l'insuline et l'induction du programme de mort cellulaire. Les mimétiques de l'hormone "Glucagon-like peptide 1", tel que l'exendin-4 (ex-4), sont une nouvelle classe d'agents hypoglycémiants utilisés dans le traitement du DT2. Les effets bénéfiques de l'ex-4 sont en partie accomplis en préservant l'expression de l'insuline et la survie des cellules ß contre les stress associés au DT2. La restauration des niveaux d'expression d'IB1 est un des mécanismes par lequel l'ex-4 prodigue son effet sur la cellule. En effet, cette molécule stimule l'activité du promoteur du gène et ainsi compense la réduction du contenu en IB1 causée par le stress. Outre ce rôle anti-apoptotique, dans ce travail de thèse nous avons mis en évidence une autre fonction d'IB1 dans la cellule ß. La réduction de l'activité ou des niveaux d'expression d'IB1 induisent une réduction importante de la sécrétion de l'insuline en réponse au glucose. Le mécanisme par lequel IB1 régule la sécrétion de l'insuline implique à la fois le métabolisme du glucose et éventuellement le transport vésiculaire en contrôlant l'expression de la protéine annexin A2. En résumé, IB 1 est une molécule clé à travers laquelle l'environnement du diabétique pourrait exercer un effet délétère sur la cellule ß. L'amélioration de l'activité d'IB1 et/ou de son expression devrait être considérée dans les approches thérapeutiques futures visant à limiter la perte des cellules ß dans le diabète. Abstract : ß-cells of the pancreatic islets of Langerhans produce and secrete insulin when blood glucose rises. In turn, insulin ensures that plasma glucose concentrations return within a relatively narrow physiological range. If ß-cells die or fail to produce enough insulin, individuals develop one of the most common diseases in Western countries, namely type 2 diabetes (T2D). Chronic excess of oxidized low density lipoproteins (oxLDL) and/or pro-inflammatory cytokines such as interleukin 1-ß (IL-1ß) contribute to decline of ß-cells and thereby are thought to accelerate progression of the disease overtime. We showed that profound reduction in the levels of the mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) causes ß-cell failure accomplished by oxLDL or IL-1 ß. IB1 regulates insulin expression and cell survivals by inhibiting the c-Jun N-terminal Kinase pathway. Diminution in IB 1 levels leads to an increase in activation of the JNK pathway induced by environmental stressors, and thus initiates loss of insulin expression and programmed cell death. The mimetic agents of the glucoincretin glucagon-like peptide 1 such as exendin-4 (ex-4) are new class of hypoglycaemic medicines for treatment of T2D. The beneficial property is in part achieved by preserving insulin expression and ß-cell survival against stressors related to diabetes. Restored levels in IB 1 account for the cytoprotective effect of the ex-4. In fact, the latter molecule .stimulates the promoter activity of the gene and thus compensates loss of IB1 content triggered by stress. Beside of the anti-apoptotic role, an additional leading function for IB 1 in ß-cells was highlighted in this thesis. Impairment in IB1 activity or silencing of the gene in ß-cells revealed a major reduction in insulin secretion elicited by glucose. The mechanisms whereby IB 1 couples glucose to insulin release involve glucose metabolism and potentially, vesicles trafficking by maintaining the levels of annexin A2. IB 1 is therefore a key molecule through which environmental factors related to diabetes may exert harmful effects on ß-cells. Improvement in IB 1 activity and/or expression should be considered as a target for therapeutic purpose.