993 resultados para brain circulation
Resumo:
PURPOSE: To evaluate the effects of recent advances in magnetic resonance imaging (MRI) radiofrequency (RF) coil and parallel imaging technology on brain volume measurement consistency. MATERIALS AND METHODS: In all, 103 whole-brain MRI volumes were acquired at a clinical 3T MRI, equipped with a 12- and 32-channel head coil, using the T1-weighted protocol as employed in the Alzheimer's Disease Neuroimaging Initiative study with parallel imaging accelerations ranging from 1 to 5. An experienced reader performed qualitative ratings of the images. For quantitative analysis, differences in composite width (CW, a measure of image similarity) and boundary shift integral (BSI, a measure of whole-brain atrophy) were calculated. RESULTS: Intra- and intersession comparisons of CW and BSI measures from scans with equal acceleration demonstrated excellent scan-rescan accuracy, even at the highest acceleration applied. Pairs-of-scans acquired with different accelerations exhibited poor scan-rescan consistency only when differences in the acceleration factor were maximized. A change in the coil hardware between compared scans was found to bias the BSI measure. CONCLUSION: The most important findings are that the accelerated acquisitions appear to be compatible with the assessment of high-quality quantitative information and that for highest scan-rescan accuracy in serial scans the acquisition protocol should be kept as consistent as possible over time. J. Magn. Reson. Imaging 2012;36:1234-1240. ©2012 Wiley Periodicals, Inc.
Resumo:
Adolescence, defined as a transition phase toward autonomy and independence, is a natural time of learning and adjustment, particularly in the setting of long-term goals and personal aspirations. It also is a period of heightened sensation seeking, including risk taking and reckless behaviors, which is a major cause of morbidity and mortality among teenagers. Recent observations suggest that a relative immaturity in frontal cortical neural systems may underlie the adolescent propensity for uninhibited risk taking and hazardous behaviors. However, converging preclinical and clinical studies do not support a simple model of frontal cortical immaturity, and there is substantial evidence that adolescents engage in dangerous activities, including drug abuse, despite knowing and understanding the risks involved. Therefore, a current consensus considers that much brain development during adolescence occurs in brain regions and systems that are critically involved in the perception and evaluation of risk and reward, leading to important changes in social and affective processing. Hence, rather than naive, immature and vulnerable, the adolescent brain, particularly the prefrontal cortex, should be considered as prewired for expecting novel experiences. In this perspective, thrill seeking may not represent a danger but rather a window of opportunities permitting the development of cognitive control through multiple experiences. However, if the maturation of brain systems implicated in self-regulation is contextually dependent, it is important to understand which experiences matter most. In particular, it is essential to unveil the underpinning mechanisms by which recurrent adverse episodes of stress or unrestricted access to drugs can shape the adolescent brain and potentially trigger life-long maladaptive responses.
Resumo:
The aim of this experimental study is to evaluate the feasibility and the outcome of total endovascular stent implantation in the aortic arch. Indications for this operation-technique would be acute or chronic dissection of the aortic arch (non-A-non-B dissection) or type B dissection with retrograde extension. Four pigs were canulated via the distal abdominal aorta and a retrograde placement of a Djumbodis arch stent (4-9 cm) was controlled by using intravascular ultrasound and intracardiac ultrasound by the inferior cava vein and under radioscopic control. Cerebral perfusion, by using a flow meter placed on one prepared carotid artery, were controlled before, immediate post-procedural (<1 min), and in the early follow-up after aortic arch stent implantation. During the implantation process, especially during balloon inflation and deflation, mean carotid perfusion decreases slightly. A reactive increase of carotid perfusion after stent placements indicates transitory cerebral hypo-perfusion. Non-covered aortic arch stent implantation is technically feasible and could be a potential treatment option in otherwise inoperable arch dissections. The time required for balloon inflation and deflation causes an important risk of cerebral ischemia. The latter can be reduced by transaxillary perfusion.
Resumo:
The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.
Resumo:
Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity.
Resumo:
The physiological basis of human cerebral asymmetry for language remains mysterious. We have used simultaneous physiological and anatomical measurements to investigate the issue. Concentrating on neural oscillatory activity in speech-specific frequency bands and exploring interactions between gestural (motor) and auditory-evoked activity, we find, in the absence of language-related processing, that left auditory, somatosensory, articulatory motor, and inferior parietal cortices show specific, lateralized, speech-related physiological properties. With the addition of ecologically valid audiovisual stimulation, activity in auditory cortex synchronizes with left-dominant input from the motor cortex at frequencies corresponding to syllabic, but not phonemic, speech rhythms. Our results support theories of language lateralization that posit a major role for intrinsic, hardwired perceptuomotor processing in syllabic parsing and are compatible both with the evolutionary view that speech arose from a combination of syllable-sized vocalizations and meaningful hand gestures and with developmental observations suggesting phonemic analysis is a developmentally acquired process.
Resumo:
There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.
Resumo:
Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.
Resumo:
BACKGROUND AND PURPOSE: Most of the neuropathological studies in brain aging were based on the assumption of a symmetrical right-left hemisphere distribution of both Alzheimer disease and vascular pathology. To explore the impact of asymmetrical lesion formation on cognition, we performed a clinicopathological analysis of 153 cases with mixed pathology except macroinfarcts. METHODS: Cognitive status was assessed prospectively using the Clinical Dementia Rating scale; neuropathological evaluation included assessment of Braak neurofibrillary tangle and Ass deposition staging, microvascular pathology, and lacunes. The right-left hemisphere differences in neuropathological scores were evaluated using the Wilcoxon signed rank test. The relationship between the interhemispheric distribution of lesions and Clinical Dementia Rating scores was assessed using ordered logistic regression. RESULTS: Unlike Braak neurofibrillary tangle and Ass deposition staging, vascular scores were significantly higher in the left hemisphere for all Clinical Dementia Rating scores. A negative relationship was found between Braak neurofibrillary tangle, but not Ass staging, and vascular scores in cases with moderate to severe dementia. In both hemispheres, Braak neurofibrillary tangle staging was the main determinant of cognitive decline followed by vascular scores and Ass deposition staging. The concomitant predominance of Alzheimer disease and vascular pathology in the right hemisphere was associated with significantly higher Clinical Dementia Rating scores. CONCLUSIONS: Our data show that the cognitive impact of Alzheimer disease and vascular lesions in mixed cases may be assessed unilaterally without major information loss. However, interhemispheric differences and, in particular, increased vascular and Alzheimer disease burden in the right hemisphere may increase the risk for dementia in this group.
Resumo:
The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution.
Resumo:
Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.
Resumo:
Les syndromes de déficiences cérébrales en créatine (CCDS) sont dus à des mutations dans les gènes GATM et G AMT (codant pour les enzymes AGAT et G AMT de la voie de synthèse de créatine) ainsi que SLC6A8 (transporteur de créatine), et génèrent une absence ou une très forte baisse de créatine (Cr) dans le cerveau, mesurée par spectroscopic de résonance magnétique. Les patients CCDS développent des handicaps neurologiques sévères. Les patients AGAT et GAMT peuvent être traités avec des doses importantes de Cr, mais gardent dans la plupart des cas des séquelles neurologiques irréversibles. Aucun traitement efficace n'existe à ce jour pour la déficience en SLC6A8. Bien que de nombreux modèles aient été développés pour comprendre la Cr cérébrale en conditions physiologiques, les pathomécanismes des CCDS ne sont pas encore compris. Des souris transgéniques pour les gènes Gatm, Gamt et Slc6a8 ont été générées, mais elles ne miment que partiellement la pathologie humaine. Parmi les CCDS, la déficience en GAMT est la plus sévère, en raison de l'accumulation cérébrale de l'intermédiaire guanidinoacétate (GAA). Alors que la toxicité cérébrale du GAA a été étudiée par exposition directe au GAA d'animaux adultes sains, les mécanismes de la toxicité du GAA en condition de déficience en GAMT dans le cerveau en développement sont encore inconnus. Le but de ce projet était donc de développer un modèle de déficience en GAMT dans des cultures 3D primaires de cellules nerveuses de rat en agrégats par knock-down du gène GAMT, en utilisant un virus adéno-associé (AAV) induisant le mécanisme d'interférence à l'ARN (RNAi). Le virus scAAV2, à la multiplicité d'infection de 1000, s'est révélé le plus efficace pour transduire tous les types de cellules nerveuses des cultures (neurones, astrocytes, oligodendrocytes), et générer un knock-down maximal de la protéine GAMT de 85% (jour in vitro 18). Cette déficience partielle en GAMT s'est révélée insuffisante pour générer une déficience en Cr, mais a causé l'accumulation attendue de GAA, à des doses comparables aux niveaux observés dans le LCR des patients GAMT. Le GAA a induit une croissance axonale anarchique accompagnée d'une baisse de l'apoptose naturelle, suivis par une induction tardive de mort cellulaire non-apoptotique. Le co-traitement par la Cr a prévenu tous les effets toxiques du GAA. Ce travail montre que l'accumulation de GAA en absence de déficience en Cr est suffisante pour affecter le développement du tissu nerveux, et suggère que des formes de déficiences en GAMT supplémentaires, ne présentant pas de déficiences en Cr, pourraient être découvertes par mesure du GAA, en particulier à travers les programmes récemment proposés de dépistage néonatal de la déficience en GAMT. -- Cerebral creatine deficiency syndromes (CCDS) are caused by mutations in the genes GATM and GAMT (respectively coding for the two enzymes of the creatine synthetic pathway, AGAT and GAMT) as well as SLC6A8 (creatine transporter), and lead to the absence or very strong decrease of creatine (Cr) in the brain when measured by magnetic resonance spectroscopy. Affected patients show severe neurological impairments. While AGAT and GAMT deficient patients can be treated with high dosages of Cr, most remain with irreversible brain sequelae. No treatment has been successful so far for SLC6A8 deficiency. While many models have helped understanding the cerebral Cr pathways in physiological conditions, the pathomechanisms underlying CCDS are yet to be elucidated. Transgenic mice carrying mutations in the Gatm, Gamt and Slc6a8 genes have been developed, but only partially mimic the human pathology. Among CCDS, GAMT deficiency is the most severe, due to the CNS accumulation of the guanidinoacetate (GAA) intermediate. While brain toxicity of GAA has been explored through direct GAA exposure of adult healthy animals, the mechanisms underlying GAA toxicity in GAMT deficiency conditions on the developing CNS are yet unknown. The aim of this project was thus to develop and characterize a GAMT deficiency model in developing brain cells by gene knockdown, by adeno-associated virus (AAV)-driven RNA interference (RNAi) in rat 3D organotypic primary brain cell cultures in aggregates. scAAV2 with a multiplicity of infection of 1000 was shown as the most efficient serotype, was able to transduce all brain cell types (neurons, astrocytes, oligodendrocytes) and to induce a maximal GAMT protein knockdown of 85% (day in vitro 18). Metabolite analysis showed that partial GAMT knockdown was insufficient to induce Cr deficiency but generated the awaited GAA accumulation at concentrations comparable to the levels observed in cerebrospinal fluid of GAMT-deficient patients. Accumulated GAA induced axonal hypersprouting paralleled with inhibition of natural apoptosis, followed by a later induction in non-apoptotic cell death. Cr supplementation led to the prevention of all GAA-induced toxic effects. This work shows that GAA accumulation without Cr deficiency is sufficient to affect CNS development, and suggests that additional partial GAMT deficiencies, which may not show the classical brain Cr deficiency, may be discovered through GAA measurement including by recently proposed neonatal screening programs for GAMT deficiency.
Resumo:
Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.