923 resultados para boundary integral equation method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sub‒domain smoothed Galerkin method is proposed to integrate the advantages of mesh‒free Galerkin method and FEM. Arbitrarily shaped sub‒domains are predefined in problems domain with mesh‒free nodes. In each sub‒domain, based on mesh‒free Galerkin weak formulation, the local discrete equation can be obtained by using the moving Kriging interpolation, which is similar to the discretization of the high‒order finite elements. Strain smoothing technique is subsequently applied to the nodal integration of sub‒domain by dividing the sub‒domain into several smoothing cells. Moreover, condensation of DOF can also be introduced into the local discrete equations to improve the computational efficiency. The global governing equations of present method are obtained on the basis of the scheme of FEM by assembling all local discrete equations of the sub‒domains. The mesh‒free properties of Galerkin method are retained in each sub‒domain. Several 2D elastic problems have been solved on the basis of this newly proposed method to validate its computational performance. These numerical examples proved that the newly proposed sub‒domain smoothed Galerkin method is a robust technique to solve solid mechanics problems based on its characteristics of high computational efficiency, good accuracy, and convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a new steganalytic method to detect the message hidden in a black and white image using the steganographic technique developed by Liang, Wang and Zhang. Our detection method estimates the length of hidden message embedded in a binary image. Although the hidden message embedded is visually imperceptible, it changes some image statistic (such as inter-pixels correlation). Based on this observation, we first derive the 512 patterns histogram from the boundary pixels as the distinguishing statistic, then we compute the histogram difference to determine the changes of the 512 patterns histogram induced by the embedding operation. Finally we propose histogram quotient to estimate the length of the embedded message. Experimental results confirm that the proposed method can effectively and reliably detect the length of the embedded message.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unsaturated water flow in soil is commonly modelled using Richards’ equation, which requires the hydraulic properties of the soil (e.g., porosity, hydraulic conductivity, etc.) to be characterised. Naturally occurring soils, however, are heterogeneous in nature, that is, they are composed of a number of interwoven homogeneous soils each with their own set of hydraulic properties. When the length scale of these soil heterogeneities is small, numerical solution of Richards’ equation is computationally impractical due to the immense effort and refinement required to mesh the actual heterogeneous geometry. A classic way forward is to use a macroscopic model, where the heterogeneous medium is replaced with a fictitious homogeneous medium, which attempts to give the average flow behaviour at the macroscopic scale (i.e., at a scale much larger than the scale of the heterogeneities). Using the homogenisation theory, a macroscopic equation can be derived that takes the form of Richards’ equation with effective parameters. A disadvantage of the macroscopic approach, however, is that it fails in cases when the assumption of local equilibrium does not hold. This limitation has seen the introduction of two-scale models that include at each point in the macroscopic domain an additional flow equation at the scale of the heterogeneities (microscopic scale). This report outlines a well-known two-scale model and contributes to the literature a number of important advances in its numerical implementation. These include the use of an unstructured control volume finite element method and image-based meshing techniques, that allow for irregular micro-scale geometries to be treated, and the use of an exponential time integration scheme that permits both scales to be resolved simultaneously in a completely coupled manner. Numerical comparisons against a classical macroscopic model confirm that only the two-scale model correctly captures the important features of the flow for a range of parameter values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE) governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE) using two-parameter groups. This technique reduces the number of independent variables by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the shooting method. The thermal and velocity boundary layers are studied by the means of Prandtl number and non-Newtonian power index plotted in curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the derivation of amplitude equations through a new two-time-scale method [O'Malley, R. E., Jr. & Kirkinis, E (2010) A combined renormalization group-multiple scale method for singularly perturbed problems. Stud. Appl. Math. 124, 383-410], we show that a multi-scale method may often be preferable for solving singularly perturbed problems than the method of matched asymptotic expansions. We illustrate this approach with 10 singularly perturbed ordinary and partial differential equations. © 2011 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a straightforward method to asymptotically solve a variety of initial and boundary value problems for singularly perturbed ordinary differential equations whose solution structure can be anticipated. The approach is simpler than conventional methods, including those based on asymptotic matching or on eliminating secular terms. © 2010 by the Massachusetts Institute of Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate nonlinear self-interacting magnetoplasma surface waves (SW) propagating perpendicular to an external magnetic field at a plasma-metal boundary. We obtain the nonlinear dispersion equation and nonlinear Schroedinger equation for the envelope field of the SW. The solution to this equation is studied with regard to stability relative to longitudinal and transverse perturbations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in studying coupled groundwater and surface-water interactions arises from the considerable difference in the response time scales of groundwater and surface-water systems affected by external forcings. Although coupled models representing the interaction of groundwater and surface-water systems have been studied for over a century, most have focused on groundwater quantity or quality issues rather than response time. In this study, we present an analytical framework, based on the concept of mean action time (MAT), to estimate the time scale required for groundwater systems to respond to changes in surface-water conditions. MAT can be used to estimate the transient response time scale by analyzing the governing mathematical model. This framework does not require any form of transient solution (either numerical or analytical) to the governing equation, yet it provides a closed form mathematical relationship for the response time as a function of the aquifer geometry, boundary conditions, and flow parameters. Our analysis indicates that aquifer systems have three fundamental time scales: (i) a time scale that depends on the intrinsic properties of the aquifer; (ii) a time scale that depends on the intrinsic properties of the boundary condition, and; (iii) a time scale that depends on the properties of the entire system. We discuss two practical scenarios where MAT estimates provide useful insights and we test the MAT predictions using new laboratory-scale experimental data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A FitzHugh-Nagumo monodomain model has been used to describe the propagation of the electrical potential in heterogeneous cardiac tissue. In this paper, we consider a two-dimensional fractional FitzHugh-Nagumo monodomain model on an irregular domain. The model consists of a coupled Riesz space fractional nonlinear reaction-diffusion model and an ordinary differential equation, describing the ionic fluxes as a function of the membrane potential. Secondly, we use a decoupling technique and focus on solving the Riesz space fractional nonlinear reaction-diffusion model. A novel spatially second-order accurate semi-implicit alternating direction method (SIADM) for this model on an approximate irregular domain is proposed. Thirdly, stability and convergence of the SIADM are proved. Finally, some numerical examples are given to support our theoretical analysis and these numerical techniques are employed to simulate a two-dimensional fractional Fitzhugh-Nagumo model on both an approximate circular and an approximate irregular domain.