885 resultados para borra de alumínio
Resumo:
O sucesso de uma espécie em um hábitat é dependente de seu desempenho ecofisiológico, que pode ser definido com variáveis de crescimento, que, por sua vez, pode relacionar-se aos recursos naturais disponíveis. Um dos fatores determinantes da ocorrência de espécies é o fator edáfico. A baixa fertilidade do solo das fisionomias do Cerrado são semelhantes, mostrando altos teores de alumínio (Al3+) e baixo pH. Contudo, solos de matas de brejo, onde Styrax pohlii é freqüente, apresentam teores levemente maiores de matéria orgânica. Logo, é possível que esta maior fertilidade do solo possa influenciar o crescimento de S. pohlii, podendo explicar sua maior ocorrência nestes hábitats. Objetivou-se medir a biomassa de órgãos, área foliar, número de folhas, área foliar específica, razão de massa de folhas e a razão de área foliar de plantas de S. pohlii, submetidas a diferentes cargas de nutrientes em cultivo hidropônico. Testou-se a hipótese de que diferentes cargas de nutrientes (100%, 50%, 25%, 10% e 1% da concentração total de uma solução nutritiva) alteram as variáveis de crescimento da espécie. As plantas foram cultivadas em caixas plásticas (20 L), contendo as diferentes cargas de nutrientes, em solução nutritiva com alumínio (Al3+) e pH 4,0. Utilizaram-se 20 parcelas (caixas plásticas) com cinco repetições (plantas) por parcela, perfazendo um total de 100 plantas. Realizaram-se quatro coletas (a cada 30 dias), onde as variáveis foram medidas. Os resultados mostraram que a espécie não respondeu a incrementos de nutrientes na solução nutritiva, podendo ela ser considerada não plástica a fatores edáficos. Considerando a grande ocorrência de indivíduos de S. pohlii em matas ripárias, ciliares e de brejo, os resultados sugerem que a fertilidade levemente maior nesses ambientes, dada pela elevação da matéria orgânica, não explica totalmente sua maior ocorrência nessas vegetações
Resumo:
The Sanding is a complex process involving many variables that affect the quality of the part produced, working mainly in the timber industry in the production of panels (MDF, MDP, HDF, etc...) and furniture. However, these industries use the sanding process empirically, not optimizing it. The aim of this study was to compare the behavior of sandpaper white aluminum oxide (OA-white) and Black silicon carbide (SiC-black), analyzing variables in the process as: strength, power, emission, vibration, wear particle size of sanding, and its consequences on the surface finish of the workpiece. Made the process of plane grinding samples of Pinus elliottii, processed in parallel to the fibers, which were sanded with sandpaper grain OA white and black 3-SiC abrasive conditions (new, moderately eroded and severely eroded) grain sizes in 3 (80, 100, and 120 mesh). 6 replicates was performed for each condition tested. Each trial was captured output variables of the sanding process: strength, power, emission and vibration. With two stages totaling 108 trials. After the sanded samples, it has the same surface quality by raising the surface roughness Ra. Through experiment, it can be concluded that abrasives OA-white tended to have higher strength, power, emissions and less vibration in the sanding process, compared to the SiC-black. However, surface finish exhibited similar to the particle size of 80 to 100 mesh, worn abrasive conditions. However, the particle size of 120 mesh, obtained by the roughness of sandpaper OA-bank was higher compared to SiC-black to all conditions of sandpaper due to its toughness
Resumo:
The process of sanding wood is little known and industries use it in a practical way without having studied their best conditions before. There are few studies involving this type of machining. On this basis, this paper studied the effects of varying moisture content of the wood surface quality after the sanding process. It was used a sanding machine with flat horizontal cut parallel to the fibers, using: 02 different species (Pinus elliottii and Corymbia citriodora); 01 sanding abrasive (aluminum oxide) and 03 different particle size abrasives ( P80 , P100 and P120 ) . Initially, the pieces were acclimatized ( 2 ± 7% , 12% and 17% ± 2 ± 2 ) and subsequently passed by the sanding process, and therefore, the surface roughness was analyzed. For each condition, were performed 06 repetitions totaling 54 trials for each species. We analyzed the effects of wood moisture by capturing the power sanding, rougheness, acoustic emission and maximum temperature during the sanding process. The variation of moisture content produced changes in the surface quality of the finished parts, and these changes were more marked in Pinus than Corymbia. During the sanding process of the specimens with 7 % and 12 % humidity, there was a lower noise emission, power consumption and heating surface. When checking the roughness of these parts after this process, it was observed that the surface quality of them were superior in the parts sanded containing 17 % moisture
Resumo:
The volume of liquid effluent generated in cattle slaughterhouses is quite high and cannot be released untreated in water bodies due to its high pollution load of predominantly organic origin. To minimize the environmental impacts of its industrial wastewater and meet the local environmental legislation, abattoirs shall make the treatment of these effluents. The present work aims to develop the study of a reactor by sequential batch pilot scale, in order to optimize their performance in treating wastewater from a cattle slaughterhouse. The treatment system used was developed and installed in the Laboratory of Wastewater Treatment, in Faculty of Science and Technology UNESP, Presidente Prudente campus. The procedure used followed the operation of sequential batch reactors, in which all processes and treatment operations occurring sequentially in a single unit, by establishing specific operating cycles, which comprise the following separated phases: aerobic reaction, anoxic reaction, sedimentation and emptying. Aiming to improve the quality of treatment was planned the addition of coagulant Poly Aluminum Chloride (PAC) in the reactor, by determining their optimal dosage by Jar-test trials. Were prepared four steps with specific operating cycles: step one or acclimatization (10 hour of aeration, one hour and 30 minutes of sedimentation and 30 minutes for exchanging the effluent); step 2 (6 hours of aeration or aerobic phase, 4 hours and 45 minutes of stirring or anoxic phase and 1 hour and 15 minutes for sedimentation and exchange effluent); step 3 (2 hours and 30 minutes of aeration, 8 hours and 15 minutes of stirring and 1 hour and 15 minutes for sedimentation and exchange) and step 4 (2 hours of aeration, 8 hours and 45 minutes of stirring and 1 hour and 15 minutes for sedimentation and exchange)... (Complete abstract click electronic access below)
Resumo:
Technology is growing interest in the use of composites, due to the requirement of lighter materials and more resistant, factors essential to meet the project specifications and reduce the operational cost. In the production of high performance structural composites, considering the aerospace criteria, the domestic industry has shown interest in the process of resin transfer molding (RTM) for reproducibility and low cost. This process is suitable for producing components of polymeric composites with relatively simple geometries, consistent thicknesses, high quality finish with no size limitations. The objective of this work was machined carbon steel to make a matched-die tooling for RTM and produce two composite plates of epoxy resin and carbon fiber fabric with and without induced discontinuities, which were compared towards their impregnation with ultrasound, their properties via tensile tests and thermal analysis. In ultrasonic inspection, it was found good impregnation of the preform of both composites. In the thermal analysis it was possible to check the degradation temperature of the composites, the glass transition temperature and it was found that the composites showed no effective cure cycles, but presented good performance in the tensile test when compared with aluminum alloy 7050 T7451 . The results showed that the injection strategy was appropriate since the laminate exhibited a good quality for the proposed application
Resumo:
The AA356 alloy is an alloy widely used in the automotive industry and aerospace due to its excellent mechanical properties. Refining the structure of eutectic silicon aluminum alloys is a fairly common practice in the foundry through treatment known as modification. This can be achieved by modifying agent adding chemicals such as contained in groups I and IIa of the periodic table and rare earths (europium, céreioi, praseodymium, neodymium, etc.). Has the ability to modify the structure of the eutectic, but only sodium and strontium produce an action modifier strong when used in low concentrations. The modifying effect of the shafts turn silicon into a fibrous form and branched surrounded by metallic matrix in the form of a composite structure that has the highest limit of tensile strength, ductility and machinability. In this work will be obtained ingots with and without the modifier type Al-10% Sr, made in sand molds and are generated and analyzed cooling curves and also the study of the macrostructure and microstructure of the solidified material. It was found that by adding the Al-Sr made shorten the solidification time and lower the grain size
Resumo:
With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards
Resumo:
Are being released in the construction market in Brazil ventures called Super 6. These businesses sell the promise of delivery of the apartment in six months after the launch of the venture. To meet this deadline are being deployed the constructive method of concrete walls using aluminum shapes. This system basically consists of pouring slabs and walls once, i.e. building up the wall shapes and slab joints. On the walls are used cloth, with reinforcements in vain and corners of walls and on these screens are tied the electrical boxes and conduits. For each tower is used the so-called system of half way, i.e. the system so it is sufficient to mount the Middle deck. Using a concrete which can be deformed in the next day you can lift one deck every two days with ready electric and hydraulicsystem, without having to tow the wall doing only minor fixes in the imperfections after concrete. With this system won an incredible speed in the construction of the structure reducing in almost one-third the length of the work. This work aims to compare in terms of cost-benefit of masonry structural systems and this new concrete wall system called Super 6. For this comparison will be used as parameter values used for the achievement of the Enterprise Portal of Roses of constructor Tenda which is one of the first to use concrete wall system. This project basically consists of seven towers of six floors each and will be budgeted the cost of this project if it were held in structural masonry. From these data it will be possible to make a comparison about the actual beneficial to adopt this system
Resumo:
This present study aimed at developing a methodology for analyzing on the feasibility of a new supplier of raw materials, industrial of aluminum production technology Soederberg. This raw material is pitch, which will be used in the manufacture of anodes for the electrolytic pot. The supplier to be analyzed is the Chemcoal of Ukrainian origin. Thereby developing techniques for a complete analysis, targeting the physical and chemical properties of pitch, economic feasibility and potential impacts on the client, potroom where these impacts may affect the production of aluminum, skimming factor, bubble noise, plasticity top anode and the anode consumption. After planning the test that was conducted on two strategies to generate greater traceability of impacts, data were collected and then it was made a statistical treatment of the data using statistical tools to generate the minitab greater reliability of results
Resumo:
This work consists of the implementation of the steps Define, Measure , Analyze , Improve and Control ( DMAIC ) to develop a Six Sigma project in an industry the food industry. The objective was to demonstrate a potential for reducing the occurrence of crushed cans in potting milk powder industry in a White Belt project. The food industry accounts for about 9 % of Brazil's gross domestic product ( GDP ), generating thousands of jobs . Among the major sectors of the food industry is the manufacturing sector of milk , occupies approximately 10 % of the total turnover of the food industry . Brazil is considered today one of the eight largest producers of milk powder in the world. The milk powder is packed , mostly for aluminum cans that are lined internally with varnishes and other materials to protect the milk of metals from aluminum. When the cans are dented food protection is compromised and may lead ingestion causing dis-eases such as botulism. Aiming to solve the problem of dented cans methodology was used as a case study with a quantitative approach through the DMAIC method. Some quality tools used in each step of the project as brainstorming , cause and effect diagram , flowchart , ef-fort and impact matrix, 5W1H , among other Pareto diagram is presented . A survey about the disposal of cans in the company verifying a mean loss and, from this histor-ical , a goal loss was calculated was performed . With the target set we calculated the annual saving design . During application of DMAIC was found that the highest rate of loss occurred in transportation between the factory and the factory that fills cans milk . Several actions were taken to resolve problems that resulted in dented cans and the first two months of phase control it was found that the smaller losses calculated target resulting in a saving for the company. The short time of implementa-tion of the Improve phase did not allow a more detailed a ...
Resumo:
With the market more and more disputed and negotiations where the customer is the main factor who decides whether the companies have conditions or not to dispute the market, industries must search improvements in products and processes targeting lower costs and better quality. With that in mind, this work will study the actual situation of a line of Tension Leveler, after cold mill process, for aluminum coil, and search new technologies, precisely the Scrap Baller machine, which will raise the quality level and the line’s productivity. It will be analyzed the justifications (reasons) for these new technologies, the history, the involved concepts, the operation, functions, the material that will be tension leveled, the limitations and tech and economic viability in comparison with the actual system. Also it will be taken a brief about the aluminum coil production in Brazil, especially the ones which destiny is aluminum beverage can, and the recycling process, that is very well done in Brazil, worldwide leader in aluminum recycling
Resumo:
This work proposes a study on the materials selections and processes for the manufacture of aircraft and showing a methodology to reduce the manufacturing cost. The DFMA can be understood as a methodology that aims at reducing manufacturing and assembly costs and coupled with the increase of product quality through design simplifications. The most commonly material used in the manufacture of aircraft is aluminum alloys due to these possess great structural strength, good elasticity, and being stainless having a low specific weight (about 1/3 that of steel), reducing the weight of the aircraft. A case study in which an operation in the process of verifying the quality was generating unnecessary costs time / man for the company was also developed. The problem solution was simple, just removing the attachment process. It was found that the DFMA methodology is extremely important for the simplification of processes and projects, contributing to the reduction of manufacturing costs of aircraft
Resumo:
Currently exists a growing concern for the preservation of the environment Around the world, the environmental awareness in Brazil has strengthened during the past two decades. This concern in Brazil arises from the creation of mechanisms of supervision and punishment on the part of the environmental agencies. In order to meet the pertinent legislation many public and private companies have performed dehydration of waste generated in the process of treatment of industrial effluents, waste water and water treatment in order to reduce transport and disposal costs. The use of geotextile tubes has proven technically and economically feasible to be applied in various situations from water treatment to mining tailings. This work presents the solution adopted for an environmental liability in water treatment plant through the use of geotextile tubes to reduce the water content of the disposal. We evaluated the size distribution curves, Atterberg limits, and chemical composition of the residue. Found high concentrations of aluminum in the waste which would characterize environmental pollution if disposed off directly in nature with no treatment
Resumo:
Cosmic radiation has been identi ed as one of the main hazard to crew, aircraft and sensitive equipments involved in long-term missions and even high-altitude commercial ights. Generally, shields are used in spatial units to avoid excessive exposure, by holding the incident radiation. Unfortunatelly, shielding in space is problematic, especially when high-energy cosmic particles are considered, due to the production of large number of secondary particles, mainly neutrons, protons and alpha particles, caused by spallation reactions and quasi-elastic processes of the corpuscular radiation with the shield. Good parameters for checking the secondary particle production at target material are diferential cross section and energy deposited in the shield. Addition experiments, some computer codes based on Monte Carlo method show themselves a suitable tool to calculate shield parameters, due to have evaluated nuclear data libraries implemented on the algorithm. In view of this, the aim of this work is determining the parameters evaluated in shielding materials, by using MCNPX code, who shows good agreement with experimental data from literature. Among the materials, Aluminium had lower emission and production of secondary particles
Resumo:
The aim of this study is to characterize the macrostructure and microstructure of Al - 1%Si alloy obtained in sand and metallic molds. Aluminium has good mechanical properties, but adding silicon, even in small quantities, can change the microstructure and improves mechanical behavior. Workpieces were castings in metallic and sand molds and one can see a difference in their cooling curve, macroscopic and microscopic structures. The sand mold casting has lower cooling rate and so its grains are larger. Due to the lower concentration of grain boundary, the hardness is lower compared to that found in metallic molds, which has smaller grains and a higher hardness. Therefore, it can be concluded that the cooling rate and alloying elements affect the final microstructure of the workpiece