926 resultados para bone morphogenetic protein receptor 1B


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The docking protein FRS2α has been implicated as a mediator of signaling via fibroblast growth factor receptors (FGFRs). We have demonstrated that targeted disruption of FRS2α gene causes severe impairment in mouse development resulting in embryonal lethality at E7.0–E7.5. Experiments with FRS2α-deficient fibroblasts demonstrate that FRS2α plays a critical role in FGF-induced mitogen-activated protein (MAP) kinase stimulation, phosphatidylinositol-3 (PI-3) kinase activation, chemotactic response, and cell proliferation. Following FGF stimulation, tyrosine phosphorylated FRS2α functions as a site for coordinated assembly of a multiprotein complex that includes Gab1 and the effector proteins that are recruited by this docking protein. Furthermore, we demonstrate that different tyrosine phosphorylation sites on FRS2α are responsible for mediating different FGF-induced biological responses. These experiments establish the central role of FRS2α in signaling via FGFRs and demonstrate that FRS2α mediates multiple FGFR-dependent signaling pathways critical for embryonic development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Specification of unequal daughter cell fates in the Drosophila external sense organ lineage requires asymmetric localization of the intrinsic determinant Numb as well as cell-cell interactions mediated by the Delta ligand and Notch receptor. Previous genetic studies indicated that numb acts upstream of Notch, and biochemical studies revealed that Numb can bind Notch. For a functional assay of the action of Numb on Notch signaling, we expressed these proteins in cultured Drosophila cells and used nuclear translocation of Suppressor of Hairless [Su(H)] as a reporter for Notch activity. We found that Numb interfered with the ability of Notch to cause nuclear translocation of Su(H); both the C-terminal half of the phosphotyrosine binding domain and the C terminus of Numb are required to inhibit Notch. Overexpression of Numb during wing development, which is sensitive to Notch dosage, revealed that Numb is also able to inhibit the Notch receptor in vivo. In the external sense organ lineage, the phosphotyrosine binding domain of Numb was found to be essential for the function but not for asymmetric localization of Numb. Our results suggest that Numb determines daughter cell fates in the external sense organ lineage by inhibiting Notch signaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanism underlying the generation of soluble growth hormone binding protein (GHBP) probably differs among species. In rats and mice, it involves an alternatively spliced mRNA, whereas in rabbits, it involves limited proteolysis of the membrane-bound growth hormone receptor (GHR). In humans, this latter mechanism is favored, as no transcript coding for a soluble GHR has been detected so far. To test this hypothesis, we analyzed COS-7 cells transiently expressing the full-length human (h) GHR and observed specific GH-binding activity in the cell supernatants. Concomitantly, an alternatively spliced form in the cytoplasmic domain of GHR, hGHR-tr, was isolated from several human tissues. hGHR-tr is identical in sequence to hGHR, except for a 26-bp deletion leading to a stop codon at position 280, thereby truncating 97.5% of the intracellular domain of the receptor protein. When compared with hGHR, hGHR-tr showed a significantly increased capacity to generate a soluble GHBP. Interestingly, this alternative transcript is also expressed in liver from rabbits, mice, and rats, suggesting that, in these four species, proteolysis of the corresponding truncated transmembrane GHR is a common mechanism leading to GHBP generation. These findings support the hypothesis that GHBP may at least partly result from alternative splicing of the region encoding the intracellular domain and that the absence of a cytoplasmic domain may be involved in increased release of GHBP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mouse mast cells express gp49B1, a cell-surface member of the Ig superfamily encoded by the gp49B gene. We now report that by ALIGN comparison of the amino acid sequence of gp49B1 with numerous receptors of the Ig superfamily, a newly recognized family has been established that includes gp49B1, the human myeloid cell Fc receptor for IgA, the bovine myeloid cell Fc receptor for IgG2, and the human killer cell inhibitory receptors expressed on natural killer cells and T lymphocyte subsets. Furthermore, the cytoplasmic domain of gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs that are also present in killer cell inhibitory receptors; these motifs downregulate natural killer cell and T-cell activation signals that lead to cytotoxic activity. As assessed by flow cytometry with transfectants that express either gp49B1 or gp49A, which are 89% identical in the amino acid sequences of their extracellular domains, mAb B23.1 was shown to recognize only gp49B1. Coligation of mAb B23.1 bound to gp49B1 and IgE fixed to the high-affinity Fc receptor for IgE on the surface of mouse bone marrow-derived mast cells inhibited exocytosis in a dose-related manner, as defined by the release of the secretory granule constituent beta-hexosaminidase, as well as the generation of the membrane-derived lipid mediator, leukotriene C4. Thus, gp49B1 is an immunoreceptor tyrosine-based inhibition motif-containing integral cell-surface protein that downregulates the high-affinity Fc receptor for IgE-mediated release of proinflammatory mediators from mast cells. Our findings establish a novel counterregulatory transmembrane pathway by which mast cell activation can be inhibited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Latent infection membrane protein 1 (LMP1), the Epstein-Barr virus transforming protein, associates with tumor necrosis factor receptor (TNFR) associated factor 1 (TRAF1) and TRAF3. Since TRAF2 has been implicated in TNFR-mediated NF-kappa B activation, we have evaluated the role of TRAF2 in LMP1-mediated NF-kappa B activation. TRAF2 binds in vitro to the LMP1 carboxyl-terminal cytoplasmic domain (CT), coprecipitates with LMP1 in B lymphoblasts, and relocalizes to LMP1 plasma membrane patches. A dominant negative TRAF2 deletion mutant that lacks amino acids 6-86 (TRAF/ delta 6-86) inhibits NF-kappa B activation from the LMP1 CT and competes with TRAF2 for LMP1 binding. TRAF2 delta 6-86 inhibits NF-kappa B activation mediated by the first 45 amino acids of the LMP1 CT by more than 75% but inhibits NF-kappa B activation through the last 55 amino acids of the CT by less than 40%. A TRAF interacting protein, TANK, inhibits NF-kappa B activation by more than 70% from both LMP1 CT domains. These data implicate TRAF2 aggregation in NF-kappa B activation by the first 45 amino acids of the LMP1 CT and suggest that a different TRAF-related pathway may be involved in NF-kappa B activation by the last 55 amino acids of the LMP1 CT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies of gene regulation have revealed that several transcriptional regulators can switch between activator and repressor depending upon both the promoter and the cellular context. A relatively simple prokaryotic example is illustrated by the Escherichia coli CytR regulon. In this system, the cAMP receptor protein (CRP) assists the binding of RNA polymerase as well as a specific negative regulator, CytR. Thus, CRP functions either as an activator or as a corepressor. Here we show that, depending on promoter architecture, the CRP/CytR nucleoprotein complex has opposite effects on transcription. When acting from a site close to the DNA target for RNA polymerase, CytR interacts with CRP to repress transcription, whereas an interaction with CRP from appropriately positioned upstream binding sites can result in formation of a huge preinitiation complex and transcriptional activation. Based on recent results about CRP-mediated regulation of transcription initiation and the finding that CRP possesses discrete surface-exposed patches for protein-protein interaction with RNA polymerase and CytR, a molecular model for this dual regulation is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein C activation on the surface of the endothelium is critical to the negative regulation of blood coagulation. We now demonstrate that monoclonal antibodies that block protein C binding to the endothelial cell protein C receptor (EPCR) reduce protein C activation rates by the thrombin-thrombomodulin complex on endothelium, but that antibodies that bind to EPCR without blocking protein C binding have no effect. The kinetic result of blocking the EPCR-protein C interaction is an increased apparent Km for the activation without altering the affinity of thrombin for thrombomodulin. Activation rates of the protein C derivative lacking the gamma-carboxyglutamic acid domain, which is required for binding to EPCR, are not altered by the anti-EPCR antibodies. These data indicate that the protein C activation complex involves protein C, thrombin, thrombomodulin, and EPCR. These observations open new questions about the control of coagulation reactions on vascular endothelium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Signals emanating from CD40 play crucial roles in B-cell function. To identify molecules that transduce CD40 signalings, we have used the yeast two-hybrid system to done cDNAs encoding proteins that bind the cytoplasmic tail of CD40. A cDNA encoding a putative signal transducer protein, designated TRAF5, has been molecularly cloned. TRAF5 has a tumor necrosis factor receptor-associated factor (TRAF) domain in its carboxyl terminus and is most homologous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, a previously identified CD40-associated factor. The amino terminus has a RING finger domain, a cluster of zinc fingers and a coiled-coil domain, which are also present in other members of the TRAF family protein except for TRAF1. In vitro binding assays revealed that TRAF5 associates with the cytoplasmic tail of CD40, but not with the cytoplasmic tail of tumor receptor factor receptor type 2, which associates with TRAF2. Based on analysis of the association between TRAF5 and various CD40 mutants, residues 230-269 of CD40 are required for the association with TRAF5. In contrast to TRAF3, overexpression of TRAF5 activates transcription factor nuclear factor kappa B. Furthermore, amino-terminally truncated forms of TRAF5 suppress the CD40-mediated induction of CD23 expression, as is the case with TRAF3. These results suggest that TRAF5 and TRAF3 could be involved in both common and distinct signaling pathways emanating from CD40.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transgenic mice were generated with cardiac-specific overexpression of the G protein-coupled receptor kinase-5 (GRK5), a serine/threonine kinase most abundantly expressed in the heart compared with other tissues. Animals overexpressing GRK5 showed marked beta-adrenergic receptor desensitization in both the anesthetized and conscious state compared with nontransgenic control mice, while the contractile response to angiotensin II receptor stimulation was unchanged. In contrast, the angiotensin II-induced rise in contractility was significantly attenuated in transgenic mice overexpressing the beta-adrenergic receptor kinase-1, another member of the GRK family. These data suggest that myocardial overexpression of GRK5 results in selective uncoupling of G protein-coupled receptors and demonstrate that receptor specificity of the GRKs may be important in determining the physiological phenotype.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Steroid receptors are ligand-regulated transcription factors that require coactivators for efficient activation of target gene expression. The binding protein of cAMP response element binding protein (CBP) appears to be a promiscuous coactivator for an increasing number of transcription factors and the ability of CBP to modulate estrogen receptor (ER)- and progesterone receptor (PR)-dependent transcription was therefore examined. Ectopic expression of CBP or the related coactivator, p300, enhanced ER transcriptional activity by up to 10-fold in a receptor- and DNA-dependent manner. Consistent with this, the 12S E1A adenoviral protein, which binds to and inactivates CBP, inhibited ER transcriptional activity, and exogenous CBP was able to partially overcome this effect. Furthermore, CBP was able to partially reverse the ability of active ER to squelch PR-dependent transcription, indicating that CBP is a common coactivator for both receptors and that CBP is limiting within these cells. To date, the only other coactivator able to significantly stimulate receptor-dependent transcription is steroid receptor coactivator-1 (SRC-1). Coexpression of CBP and SRC-1 stimulated ER and PR transcriptional activity in a synergistic manner and indicated that these two coactivators are not functional homologues. Taken together, these data suggest that both CBP and SRC-1 may function in a common pathway to efficiently activate target gene expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, a large family of transducer proteins in the Archaeon Halobacterium salinarium was identified. On the basis of the comparison of the predicted structural domains of these transducers, three distinct subfamilies of transducers were proposed. Here we report isolation, complete gene sequences, and analysis of the encoded primary structures of transducer gene htrII, a member of family B, and its blue light receptor gene (sopII) of sensory rhodopsin II (SRII). The start codon ATG of the 714-bp sopII gene is one nucleotide beyond the termination codon TGA of the 2298-bp htrII gene. The deduced protein sequence of HtrII predicts a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm. HtrII has a common feature with HtrI, the sensory rhodopsin I transducer; like HtrI, HtrII possesses a hydrophilic loop structure just after the second transmembrane segment. The C-terminal 299 residues (765 amino acid residues total) of HtrII show strong homology to the signaling and methylation domain of eubacterial transducer Tsr. The hydropathy plot of the primary structure of SRII indicates seven membrane-spanning alpha-helical segments, a characteristic feature of retinylidene proteins ("rhodopsins") from a widespread family of photoactive pigments. SRII shows high identity with SRI (42%), bacteriorhodopsin (BR) (32%), and halorhodopsin (24%). The crucial positions for retinal binding sites in these proteins are nearly identical, with the exception of Met-118 (numbering according to the mature BR sequence), which is replaced by Val in SRII. In BR, residues Asp-85 and Asp-96 are crucial in proton pumping. In SRII, the position corresponding to Asp-85 in BR is conserved, but the corresponding position of Asp-96 is replaced by an aromatic Tyr. Coexpression of the htrII and sopII genes restores SRII phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI and insertion in htrII/sopII regions. This paper describes the first example that both HtrI and HtrII exist in the same halobacterial cell, confirming that different sensory rhodopsins SRI and SRII in the same organism have their own distinct transducers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High molecular weight kininogen (HK) and factor XII are known to bind to human umbilical vein endothelial cells (HUVEC) in a zinc-dependent and saturable manner indicating that HUVEC express specific binding site(s) for those proteins. However, identification and immunochemical characterization of the putative receptor site(s) has not been previously accomplished. In this report, we have identified a cell surface glycoprotein that is a likely candidate for the HK binding site on HUVECs. When solubilized HUVEC membranes were subjected to an HK-affinity column in the presence or absence of 50 microM ZnCl2 and the bound membrane proteins eluted, a single major protein peak was obtained only in the presence of zinc. SDS/PAGE analysis and silver staining of the protein peak revealed this protein to be 33 kDa and partial sequence analysis matched the NH2 terminus of gC1q-R, a membrane glycoprotein that binds to the globular "heads" of C1q. Two other minor proteins of approximately 70 kDa and 45 kDa were also obtained. Upon analysis by Western blotting, the 33-kDa band was found to react with several monoclonal antibodies (mAbs) recognizing different epitopes on gC1q-R. Ligand and dot blot analyses revealed zinc-dependent binding of biotinylated HK as well as biotinylated factor XII to the isolated 33-kDa HUVEC molecule as well as recombinant gC1q-R. In addition, binding of 125I-HK to HUVEC cells was inhibited by selected monoclonal anti-gC1q-R antibodies. C1q, however, did not inhibit 125I-HK binding to HUVEC nor did those monoclonals known to inhibit C1q binding to gC1q-R. Taken together, the data suggest that HK (and factor XII) bind to HUVECs via a 33-kDa cell surface glycoprotein that appears to be identical to gC1q-R but interact with a site on gC1q-R distinct from that which binds C1q.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Guanine nucleotide-binding regulatory protein (G protein)-coupled receptor kinases (GRKs) constitute a family of serine/threonine kinases that play a major role in the agonist-induced phosphorylation and desensitization of G-protein-coupled receptors. Herein we describe the generation of monoclonal antibodies (mAbs) that specifically react with GRK2 and GRK3 or with GRK4, GRK5, and GRK6. They are used in several different receptor systems to identify the kinases that are responsible for receptor phosphorylation and desensitization. The ability of these reagents to inhibit GRK- mediated receptor phosphorylation is demonstrated in permeabilized 293 cells that overexpress individual GRKs and the type 1A angiotensin II receptor. We also use this approach to identify the endogenous GRKs that are responsible for the agonist-induced phosphorylation of epitope-tagged beta2- adrenergic receptors (beta2ARs) overexpressed in rabbit ventricular myocytes that are infected with a recombinant adenovirus. In these myocytes, anti-GRK2/3 mAbs inhibit isoproterenol-induced receptor phosphorylation by 77%, while GRK4-6-specific mAbs have no effect. Consistent with the operation of a betaAR kinase-mediated mechanism, GRK2 is identified by immunoblot analysis as well as in a functional assay as the predominant GRK expressed in these cells. Microinjection of GRK2/3-specific mAbs into chicken sensory neurons, which have been shown to express a GRK3-like protein, abolishes desensitization of the alpha2AR-mediated calcium current inhibition. The intracellular inhibition of endogenous GRKs by mAbs represents a novel approach to the study of receptor specificities among GRKs that should be widely applicable to many G-protein-coupled receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The alpha-factor pheromone receptor stimulates MATa yeast cells to undergo conjugation. The receptor contains seven transmembrane domains that function in ligand binding and in transducing a signal to the cytoplasmic receptor sequences to mediate G protein activation. A genetic screen was used to isolate receptor mutations that constitutively signal in the absence of alpha-factor. The Pro-258-->Leu (P258L) mutation caused constitutive receptor signaling that was equivalent to about 45% of the maximum level observed in wild-type cells stimulated with alpha-factor. Mutations of both Pro-258 and the adjacent Ser-259 to Leu increased constitutive signaling to > or = 90% of the maximum level. Since Pro-258 occurs in the central portion of transmembrane domain 6, and since proline residues are expected to cause a kink in alpha-helical domains, the P258L mutation is predicted to alter the structure of transmembrane domain 6. The P258L mutation did not result in a global distortion of receptor structure because alpha-factor bound to the mutant receptors with high affinity and induced even higher levels of signaling. These results suggest that sequences surrounding Pro-258 may be involved in ligand activation of the receptor. Conformational changes in transmembrane domain 6 may effect a change in the adjacent sequences in the third intracellular loop that are thought to function in G protein activation. Greater than 90% of all G protein-coupled receptors contain a proline residue at a similar position in transmembrane domain 6, suggesting that this aspect of receptor activation may be conserved in other receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strongly rectifying IRK-type inwardly rectifying K+ channels are involved in the control of neuronal excitability in the mammalian brain. Whole-cell patch-clamp experiments show that cloned rat IRK1 (Kir 2.1) channels, when heterologously expressed in mammalian COS-7 cells, are inhibited following the activation of coexpressed serotonin (5-hydroxytryptamine) type 1A receptors by receptor agonists. Inhibition is mimicked by internal perfusion with GTP[gamma-S] and elevation of internal cAMP concentrations. Addition of the catalytic subunits of protein kinase A (PKA) to the internal recording solution causes complete inhibition of wild-type IRK1 channels, but not of mutant IRK1(S425N) channels in which a C-terminal PKA phosphorylation site has been removed. Our data suggest that in the nervous system serotonin may negatively control IRK1 channel activity by direct PKA-mediated phosphorylation.