986 resultados para board monitoring
Resumo:
From 25 November until 8 Deeember 1994, a sea-going workshop with the above title was carried out on board RV "Walther Herwig IlI" under the umbrella of the Baltie Marine Biologists (BMlJ) and the International Council for the Exploration of the Sea (ICES). Under the co-convenorship of the first two authors of this paper, 11 seientists from 8 of the 9 countries bordering the Baltic Sea (except Sweden) actively involved in research monitoring into fish diseases/parasites participated. The main reason for holding the workshop was that, although fish disease monitoring programmes on the abundance and spatial distribution of fish diseases/parasites are being carried out by some of the countries bordering the Baltic Sea, there is still a striking lack of seientific information as compared to other seas, such as the North Sea. Moreover, since new fish disease monitoring programmes have recently been started (mainly by the new Baltic republics Latvia and Estonia, which recently became ICES-member countries) or are planned for the near future (Lithuania), BMB as weil as ICES felt the need for a interealibration and standardization of methodologies applied during fish disease/parasite surveys for the specific conditions in the Baltic Sea. Therefore, the major objectives of the workshop were -to obtain information about the disease/parasite prevalence in Baltic (Platichthys flesus) and other abundant fish species along a transect from the western (Mecklenhurg Bight) to the eastern (Gulf of Finland) Baltic Sea to be used as a baseline for future studies, -to intercalibrate methodologies applied for sampling, diagnosis of diseases/parasites, reporting and analyses of disease data, -if necessary, to recommend standard methodologies to be used for fish disease/parasite monitoring programmes under the specific conditions in the Baltic Sea. Although the data have yet not been completely analyzed, there is indication for some pronounced spatial trends regarding the prevalence of certain diseases/parasites, mainly for Iymphocystis and skin ulcerations in flounder but also for diseases and parasites of cod (Gadus morhua) which can be seen in figures 2 and 4. Recommendations for standard methodologies will later be published elsewhere.
Resumo:
A Bayesian probabilistic methodology for on-line structural health monitoring which addresses the issue of parameter uncertainty inherent in problem is presented. The method uses modal parameters for a limited number of modes identified from measurements taken at a restricted number of degrees of freedom of a structure as the measured structural data. The application presented uses a linear structural model whose stiffness matrix is parameterized to develop a class of possible models. Within the Bayesian framework, a joint probability density function (PDF) for the model stiffness parameters given the measured modal data is determined. Using this PDF, the marginal PDF of the stiffness parameter for each substructure given the data can be calculated.
Monitoring the health of a structure using these marginal PDFs involves two steps. First, the marginal PDF for each model parameter given modal data from the undamaged structure is found. The structure is then periodically monitored and updated marginal PDFs are determined. A measure of the difference between the calibrated and current marginal PDFs is used as a means to characterize the health of the structure. A procedure for interpreting the measure for use by an expert system in on-line monitoring is also introduced.
The probabilistic framework is developed in order to address the model parameter uncertainty issue inherent in the health monitoring problem. To illustrate this issue, consider a very simplified deterministic structural health monitoring method. In such an approach, the model parameters which minimize an error measure between the measured and model modal values would be used as the "best" model of the structure. Changes between the model parameters identified using modal data from the undamaged structure and subsequent modal data would be used to find the existence, location and degree of damage. Due to measurement noise, limited modal information, and model error, the "best" model parameters might vary from one modal dataset to the next without any damage present in the structure. Thus, difficulties would arise in separating normal variations in the identified model parameters based on limitations of the identification method and variations due to true change in the structure. The Bayesian framework described in this work provides a means to handle this parametric uncertainty.
The probabilistic health monitoring method is applied to simulated data and laboratory data. The results of these tests are presented.
Resumo:
Arid and semiarid landscapes comprise nearly a third of the Earth's total land surface. These areas are coming under increasing land use pressures. Despite their low productivity these lands are not barren. Rather, they consist of fragile ecosystems vulnerable to anthropogenic disturbance.
The purpose of this thesis is threefold: (I) to develop and test a process model of wind-driven desertification, (II) to evaluate next-generation process-relevant remote monitoring strategies for use in arid and semiarid regions, and (III) to identify elements for effective management of the world's drylands.
In developing the process model of wind-driven desertification in arid and semiarid lands, field, remote sensing, and modeling observations from a degraded Mojave Desert shrubland are used. This model focuses on aeolian removal and transport of dust, sand, and litter as the primary mechanisms of degradation: killing plants by burial and abrasion, interrupting natural processes of nutrient accumulation, and allowing the loss of soil resources by abiotic transport. This model is tested in field sampling experiments at two sites and is extended by Fourier Transform and geostatistical analysis of high-resolution imagery from one site.
Next, the use of hyperspectral remote sensing data is evaluated as a substantive input to dryland remote monitoring strategies. In particular, the efficacy of spectral mixture analysis (SMA) in discriminating vegetation and soil types and detennining vegetation cover is investigated. The results indicate that hyperspectral data may be less useful than often thought in determining vegetation parameters. Its usefulness in determining soil parameters, however, may be leveraged by developing simple multispectral classification tools that can be used to monitor desertification.
Finally, the elements required for effective monitoring and management of arid and semiarid lands are discussed. Several large-scale multi-site field experiments are proposed to clarify the role of wind as a landscape and degradation process in dry lands. The role of remote sensing in monitoring the world's drylands is discussed in terms of optimal remote sensing platform characteristics and surface phenomena which may be monitored in order to identify areas at risk of desertification. A desertification indicator is proposed that unifies consideration of environmental and human variables.
Resumo:
The work in this thesis develops two types of microimplants for the application of cardiovascular in vivo biomedical sensing, one for short-term diagnosis and the other for long-term monitoring.
Despite advances in diagnosis and therapy, atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in the Western world. Predicting metabolically active atherosclerotic plaques has remained an unmet clinical need. A stretchable impedance sensor manifested as a pair of quasi-concentric microelectrodes was developed to detect unstable intravascular. By integrating the impedance sensor with a cardiac catheter, high-resolution Electrochemical Impedance Spectroscopy (EIS) measurements can be conducted during cardiac catheterization. An inflatable silicone balloon is added to the sensor to secure a well-controlled contact with the plaque under test in vivo. By deploying the device to the explants of NZW rabbit aorta and live animals, distinct EIS measurements were observed for unstable atherosclerotic plaques that harbored active lipids and inflammatory cells.
On the other hand, zebrafish (Danio rerio) is an emerging genetic model for heart regenerative medicine. In humans, myocardial infarction results in the irreversible loss of cardiomyocytes. Zebrafish hearts can fully regenerate after two months with 20% ventricular resection. Long-term electrocardiogram (ECG) recording can characterize the heart regeneration in a functional dimension. A flexible microelectrode membrane was developed to be percutaneously implanted onto a zebrafish heart and record epicardial ECG signals from specific regions on it. Region-specific aberrant cardiac signals were obtained from injured and regenerated hearts. Following that, in order to achieve continuous and wireless recording from non-sedated and non-restricted small animal models, a wireless ECG recording system was designed for the microelectrode membrane, prototyped on a printed circuit board and demonstrated on a one-day-old neonatal mouse. Furthermore, a flexible and compact parylene C printed circuit membrane was used as the integration platform for the wireless ECG recording electronics. A substantially miniature wireless ECG recording system was achieved.
Resumo:
This article is an attempt to devise a method of using certain species of Corixidae as a basis for the assessment of general water quality in lakes. An empirical graphical representation of the distribution of populations or communities of Corixidae in relation to conductivity, based mainly on English and Welsh lakes, is used as a predictive monitoring model to establish the "expected" normal community at a given conductivity, representing the total ionic concentration of the water body. A test sample from another lake of known conductivity is then compared with "expected" community. The "goodness of fit" is examined visually or by calculation of indices of similarity based on the relative proportions of the constituent species of each community. A computer programme has been devised for this purpose.
Resumo:
A major survey of the River Endrick was carried out in 1959-60. This survey was repeated three decades later in 1989-90 and comparisons were made of the fauna at the two times of sampling. During both surveys, photographs were taken of all the sampling sites and the objective of the present paper is to compare some of these photographs and discuss the value of photography in studies of river ecology. The sites used for photographic comparison were not chosen originally for that purpose but as appropriate places on the river from source to mouth to study its ecology. The pairs of photos now available have proved of interest and value and some lessons have been learned in relation to the selection of sites for any future photographic studies. Ideally photos should be taken in more than one season of the year as much of the river can be obscured by riparian trees and shrubs during the vegetative season. The exact position from which each photograph is taken is also a major factor to be considered.
Resumo:
In Finland, as in other member countries of the European Union, preparations for implementing the EC Water Framework Directive (WFD) have begun. The article describes the current monitoring and classification strategies for Finnish Lakes.
Resumo:
The proposed EC Water Framework Directive (WFD) will require member states to monitor both biotic and abiotic components of lake environments. With adoption of the WFD some measurement of fish populations will also be required. This paper describes work carried out since 1971, and particularly since 1991, on the status of fish populations in Lower Lough Erne, Northern Ireland, with an emphasis on defining change over time due to human impacts on the lake. This offers a reasonable starting point from which to develop a monitoring programme suitable for the needs of the WFD in this lake. The implications for as yet unmonitored fish populations in lakes are also determined.
Resumo:
Under the EC Water Framework Directive (WFD), each Member State is required to devise a comprehensive national monitoring programme for surface waters, incorporating hydromorphological, physico-chemical and biological elements. This paper describes one aspect of the biota - the macrophyte flora - to classify standing waters and to monitor their water quality. The evolution of this method is described and suggestions for its future development are made.
Resumo:
The proposed EC Water Framework Directive (WFD)incorporates some new concepts in the field of water protection. Most of these concepts rely on the use of applied ecology of water systems. The expected improvement of environmental management is very new in this context. The new WFD will allow the checking of the eco-epidemiological results of several human impacts on aquatic ecosystems, such as toxic pollution and habitat modification. This paper intends to show some consequences of the WFD in the field of ecotoxicology.