921 resultados para bio-medical devices
Resumo:
There is a continuous quest for developing electrochromic (EC)transition metal oxides (TMOs) with increased coloration efficiency. As emerging TMOs, Nb2O5 films, even those of ordered anodized nanochannels, have failed to produce the required EC performance for practical applications. This is attributed to limitations presented by its relatively wide bandgap and low capacity for accommodating ions. To overcome such issues, MoO3 was electrodeposited onto Nb2O5 nanochannelled films as homogeneously conformal and stratified α-MoO3 coatings of different thickness. The EC performance of the resultant MoO3 coated Nb2O5 binary system was evaluated. The system exhibited a coloration efficiency of 149.0 cm2 C−1, exceeding that of any previous reports on MoO3 and Nb2O5 individually or their compounds. The enhancement was ascribed to a combination of the reduced effective bandgap of the binary system, the increased intercalation probability from the layered α-MoO3 coating, and a high surface-tovolume ratio, while the Nb2O5 nanochannelled templates provided stability and low impurity pathways for charge transfer to occur.
Resumo:
Electronic Medical Record (EMR) systems are being implemented increasingly worldwide. Saudi Arabia is one of the developing countries that commenced implementing such systems in 1988. Whilst EMR uptake has been low in Saudi Arabia until now, a number of hospitals have implemented EMR systems successfully. This paper analyses available studies (n = 28) in the literature regarding EMR implementation in Saudi Arabia to identify the progress of EMR implementation to date and to identify the facilitators and barriers to implementation.
Resumo:
Molecular biology is a scientific discipline which has changed fundamentally in character over the past decade to rely on large scale datasets – public and locally generated - and their computational analysis and annotation. Undergraduate education of biologists must increasingly couple this domain context with a data-driven computational scientific method. Yet modern programming and scripting languages and rich computational environments such as R and MATLAB present significant barriers to those with limited exposure to computer science, and may require substantial tutorial assistance over an extended period if progress is to be made. In this paper we report our experience of undergraduate bioinformatics education using the familiar, ubiquitous spreadsheet environment of Microsoft Excel. We describe a configurable extension called QUT.Bio.Excel, a custom ribbon, supporting a rich set of data sources, external tools and interactive processing within the spreadsheet, and a range of problems to demonstrate its utility and success in addressing the needs of students over their studies.
Resumo:
This study explored the stress and wellbeing of Emergency Medical Dispatchers (EMD) who remotely provide crisis intervention to medical emergencies through telehealth support. Semi-structured interviews with 16 EMDs were conducted and Interpretative Phenomenological Analysis was used to identify themes in the data. These results indicated that despite their physical distance from the crisis scene, EMDs can experience vicarious trauma through acute and cumulative exposure to traumatic incidents and their perceived lack of control which can expound feelings of helplessness. Three superordinate themes of operational stress and trauma, organisational stress, and posttraumatic growth were identified. Practical implications are suggested to enable emergency services organisations to counteract this job related stress and promote more positive mental health outcomes.
Resumo:
This thesis is a comparative investigation of the methodology applied to human skin temperature measurement. The findings of this thesis suggest that clinical and significant differences exist between conductive and infrared devices which are commonly employed in the assessment of human skin temperature. These significant differences could potentially influence the interpretation of results, diagnosis and therefore treatment outcomes for health, clinical and exercise science applications.
Resumo:
We report a tunable alternating current electrohydrodynamic (ac-EHD) force which drives lateran fluid motion within a few nanometers of an electrode surface. Because the magnitude of this fluid shear force can be tuned externally (e.g., via the application of an ac electric field), it provides a new capability to physically displace weakly (nonspecifically) bound cellular analytes. To demonstrate the utility of the tunable nanoshearing phenomenon, we present data on purpose-built microfluidic devices that employ ac-EHD force to remove nonspecific adsorption of molecular and cellular species. Here, we show that an ac-EHD device containing asymmetric planar and microtip electrode pairs resulted in a 4-fold reduction in nonspecific adsorption of blood cells and also captured breast cancer cells in blood, with high efficiency (approximately 87%) and specificity. We therefore feel that this new capability of externally tuning and manipulating fluid flow could have wide applications as an innovative approach to enhance the specific capture of rare cells such as cancer cells in blood.
Resumo:
We report a new tuneable alternating current (ac) electrohydrodynamics (ac-EHD) force referred to as “nanoshearing” which involves fluid flow generated within a few nanometers of an electrode surface. This force can be externally tuned via manipulating the applied ac-EHD field strength. The ability to manipulate ac-EHD induced forces and concomitant fluid micromixing can enhance fluid transport within the capture domain of the channel (e.g., transport of analytes and hence increase target–sensor interactions). This also provides a new capability to preferentially select strongly bound analytes over onspecifically bound cells and molecules. To demonstrate the utility and versatility of nanoshearing phenomenon to specifically capture cancer cells, we present proof-of-concept data in lysed blood using two microfluidic devices containing a long array of asymmetric planar electrode pairs. Under the optimal experimental conditions, we achieved high capture efficiency (e.g., approximately 90%; %RSD=2, n=3) with a 10-fold reduction in nonspecific dsorption of non-target cells for the detection of whole cells expressing Human Epidermal Growth Factor Receptor 2 (HER2). We believe that our ac-EHD devices and the use of tuneable nanoshearing phenomenon may find relevance in a wide variety of biological and medical applications.
Resumo:
To provide card holder authentication while they are conducting an electronic transaction using mobile devices, VISA and MasterCard independently proposed two electronic payment protocols: Visa 3D Secure and MasterCard Secure Code. The protocols use pre-registered passwords to provide card holder authentication and Secure Socket Layer/ Transport Layer Security (SSL/TLS) for data confidentiality over wired networks and Wireless Transport Layer Security (WTLS) between a wireless device and a Wireless Application Protocol (WAP) gateway. The paper presents our analysis of security properties in the proposed protocols using formal method tools: Casper and FDR2. We also highlight issues concerning payment security in the proposed protocols.
Resumo:
This paper presents a novel place recognition algorithm inspired by the recent discovery of overlapping and multi-scale spatial maps in the rodent brain. We mimic this hierarchical framework by training arrays of Support Vector Machines to recognize places at multiple spatial scales. Place match hypotheses are then cross-validated across all spatial scales, a process which combines the spatial specificity of the finest spatial map with the consensus provided by broader mapping scales. Experiments on three real-world datasets including a large robotics benchmark demonstrate that mapping over multiple scales uniformly improves place recognition performance over a single scale approach without sacrificing localization accuracy. We present analysis that illustrates how matching over multiple scales leads to better place recognition performance and discuss several promising areas for future investigation.
Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey
Resumo:
A rapid reforming of natural honey exposed to reactive low-temperature Ar + H2 plasmas produced high-quality, ultra-thin vertical graphenes, without any metal catalyst or external heating. This transformation is only possible in the plasma and fails in similar thermal processes. The process is energy-efficient, environmentally benign, and is much cheaper than common synthesis methods based on purified hydrocarbon precursors. The graphenes retain the essential minerals of natural honey, feature reactive open edges and reliable gas- and bio-sensing performance.
Resumo:
We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as "laboratory on a chip" and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.
Resumo:
The plasma-assisted RF sputtering deposition of a biocompatible, functionally graded calcium phosphate bioceramic on a Ti6A14 V orthopedic alloy is reported. The chemical composition and presence of hydroxyapatite (HA), CaTiO3, and CaO mineral phases can be effectively controlled by the process parameters. At higher DC biases, the ratio [Ca]/[P] and the amount of CaO increase, whereas the HA content decreases. Optical emission spectroscopy suggests that CaO+ is the dominant species that responds to negative DC bias and controls calcium content. Biocompatibility tests in simulated body fluid confirm a positive biomimetic response evidenced by in-growth of an apatite layer after 24 h of immersion.
Resumo:
A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.
Resumo:
Optical emission of reactive plasma species during the synthesis of functionally graded calcium phosphate-based bioactive films has been investigated. The coatings have been deposited on Ti-6Al-4V orthopedic alloy by co-sputtering of hydroxyapatite (HA) and titanium targets in reactive plasmas of Ar + H2O gas mixtures. The species, responsible for the Ca-P-Ti film growth have been non-intrusively monitored in situ by a high-resolution optical emission spectroscopy (OES). It is revealed that the optical emission originating from CaO species dominates throughout the deposition process. The intensities of CaO, PO and CaPO species are strongly affected by variations of the operating pressure, applied RF power, and DC substrate bias. The optical emission intensity (OEI) of reaction species can efficiently be controlled by addition of H2O reactant.
Resumo:
• At common law, a competent adult can refuse life-sustaining medical treatment, either contemporaneously or through an advance directive which will operate at a later time when the adult’s capacity is lost. • Legislation in most Australian jurisdictions also provides for a competent adult to complete an advance directive that refuses life-sustaining medical treatment. • At common law, a court exercising its parens patriae jurisdiction can consent to, or authorise, the withdrawal or withholding of life-sustaining medical treatment from an adult or child who lacks capacity if that is in the best interests of the person. A court may also declare that the withholding or withdrawal of treatment is lawful. • Guardianship legislation in all jurisdictions allows a substitute decision-maker, in an appropriate case, to refuse life-sustaining medical treatment for an adult who lacks capacity. • In terms of children, a parent may refuse life-sustaining medical treatment for his or her child if it is in the child’s best interests. • While a refusal of life-sustaining medical treatment by a competent child may be valid, this decision can be overturned by a court. • At common law and generally under guardianship statutes, demand for futile treatment need not be complied with by doctors.