891 resultados para behavioral plasticity
Resumo:
Objective: Hyperactivity, one of the core symptoms of ADHD, has been mostly neglected in neuropsychological assessment of childhood ADHD. The neuropsychological Quantified behavior Test (QbTest) separately assesses all three core symptoms of ADHD on a behavioral level. Factor structure of the QbTest and its concurrent and discriminant validity are presented. Method: An exploratory factor analysis (n = 828 children) was performed. In a second sample (n = 102 children) a Multi-Trait-Multi-Method (MTMM) approach was used for validity analyses. Results: A three factorial model explained 76 % of the total variance, with the resulting QbTest factors significantly influenced by age and gender. The MTMM approach yielded promising results for discriminant, yet inconsistent findings for concurrent validity between the QbTest and another attention test as well as for Conners' Parent and Teacher Rating Scales. Conclusion: Results indicate that the QbTest may be helpful for the behavioral assessment of childhood ADHD, yet further studies on its psychometric quality and clinical utility are needed. (J. of Att. Dis. 2012; XX(X) 1-XX).
Resumo:
This study seeks to answer whether the availability heuristic leads physicians to utilize more medical care than is economically efficient. Do rare, salient events alter physicians' perceptions about the probability of patient harm? Do these events lead physicians to overutilize certain medical procedures? This study uses Pennsylvania inpatient hospital admissions data from 2009 aggregated at the physician level to investigate these questions. The data come from the 2009 Pennsylvania Health Care Cost Containment Council (PHC4). The study is divided into two parts. In Part I, we examine whether bad outcomes during childbirth (defined as maternal mortality, an obstetric fistula or a uterine rupture) lead physicians to utilize more cesarean sections on future patients. In Part II, we examine whether bad outcomes associated with appendicitis (defined as patient death, a perforated or ruptured appendix or sepsis) lead physicians to perform more negative appendectomies (appendectomies performed when the patient did not have appendicitis) on future patients. Overall the study does not find evidence to support the claim that the availability heuristic leads physicians to overutilize medical care on future patients. However, the study does find evidence that variations in health care utilization are strongly correlated with individual physician practice patterns. The results of the study also imply that physicians' financial incentives may be a source of variation in health care utilization.
Resumo:
The stability of the circadian rhythm for mammals depends on the levels of serotonin and melatonin, neurohormones that signal for lightness and darkness, respectively. Disruption in the stability of neurohormones has been shown to be a critical factor in psychopathological disorders in humans. For example, altering levels of melatonin in utero through administration of melatonin or the melatonin receptor antagonist, luzindole, has been shown to cause changes in developmental growth and adult behavior in the male rat. Analysis of relative adult hippocampal gene expression with RT-PCR revealed differences in ARNTL expression that suggested abnormality in clock gene expression of the rats that were prenatally exposed to altered levels of melatonin. Differences in the degree of plasticity as suggested by previous behavior testing did not result in differences in gene expression for GABA receptors or NMDA receptors. Morevoer, growth associated protein 43, GAP-43, a protein that is necessary for neuronal growth cones as well as long term learning has been found to be critical for axon and presynaptic terminal formation and retention in other studies, but hippocampal gene expression in our study showed no significant alteration after exposure to various maternal melatonin levels. However, ARNTL is a key regulatory component of clock genes and the circadian cycle so that alterations in the expression of thi critical gene may lead to critical changes in neuronal growth and plasticity. Our data support the conclusion that the manipulation of maternal melatonin levels alters the brain development and the circadian cycles that may lead to physiological and behavioral abnormalities in adult offspring.
Resumo:
Nurse's aides are the primary caregivers in nursing homes, a major receiving site for elders with behavioral and psychiatric problems. We describe the development, psychometric properties, and utility of a brief instrument designed to assess aides' knowledge of three specific mental health problems (depression, agitation, and disorientation) and behavioral approaches to them. The instrument was administered to 191 nurse's aides and 21 clinicians with training in behavioral management and experience with older residents. The nurse's aides averaged 11 of 17 correct answers, and the clinicians averaged 15 of 17 correct answers. Implications for staff training and consultation activities in nursing homes are discussed.
Resumo:
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain.
Resumo:
This study investigated whether children aged between 8 and 12 years born very preterm (VPT) and/or at very low birth weight (VLBW) performed lower than same-aged term-born controls in cognitive and behavioral aspects of three executive functions: inhibition, working memory, and shifting. Special attention was given to sex differences. Fifty-two VPT/VLBW children (26 girls, 50%) born in the cohort of 1998-2003 and 36 same-aged term-born children (18 girls, 50%) were recruited. As cognitive measures, children completed tasks of inhibition (Color-Word Interference Test, D-KEFS; Delis, Kaplan, & Kramer, 2001 ), working memory (digit span backwards, HAWIK-IV; Petermann & Petermann, 2008 ), and shifting (Trail Making Test, number-letter-switching, D-KEFS; Delis et al., 2001 ). As behavioral measures, mothers completed the Behavior Rating Inventory of Executive Function (BRIEF; Gioia, Isquith, Guy, & Kenworthy, 2000 ). Scales of interest were inhibit, working memory, and shift. Analyses of the cognitive aspects of executive functions revealed that VPT/VLBW children performed significantly lower than controls in the shifting task but not in the working memory and inhibition tasks. Analyses of behavioral aspects of executive functions revealed that VPT/VLBW children displayed more problems than the controls in working memory in everyday life but not in inhibition and shifting. No sex differences could be detected either in cognitive or behavioral aspects of executive functions. To conclude, cognitive and behavioral measures of executive functions were not congruent in VPT/VLBW children. In clinical practice, the combination of cognitive and behavioral instruments is required to disclose children's executive difficulties.
Resumo:
Calcium is a second messenger, which can trigger the modification of synaptic efficacy. We investigated the question of whether a differential rise in postsynaptic Ca2+ ([Ca2+]i) alone is sufficient to account for the induction of long-term potentiation (LTP) and long-term depression (LTD) of EPSPs in the basal dendrites of layer 2/3 pyramidal neurons of the somatosensory cortex. Volume-averaged [Ca2+]i transients were measured in spines of the basal dendritic arbor for spike-timing-dependent plasticity induction protocols. The rise in [Ca2+]i was uncorrelated to the direction of the change in synaptic efficacy, because several pairing protocols evoked similar spine [Ca2+]i transients but resulted in either LTP or LTD. The sequence dependence of near-coincident presynaptic and postsynaptic activity on the direction of changes in synaptic strength suggested that LTP and LTD were induced by two processes, which were controlled separately by postsynaptic [Ca2+]i levels. Activation of voltage-dependent Ca2+ channels before metabotropic glutamate receptors (mGluRs) resulted in the phospholipase C-dependent (PLC-dependent) synthesis of endocannabinoids, which acted as a retrograde messenger to induce LTD. LTP required a large [Ca2+]i transient evoked by NMDA receptor activation. Blocking mGluRs abolished the induction of LTD and uncovered the Ca2+-dependent induction of LTP. We conclude that the volume-averaged peak elevation of [Ca2+]i in spines of layer 2/3 pyramids determines the magnitude of long-term changes in synaptic efficacy. The direction of the change is controlled, however, via a mGluR-coupled signaling cascade. mGluRs act in conjunction with PLC as sequence-sensitive coincidence detectors when postsynaptic precede presynaptic action potentials to induce LTD. Thus presumably two different Ca2+ sensors in spines control the induction of spike-timing-dependent synaptic plasticity.
Resumo:
Pavlovian fear conditioning, a simple form of associative learning, is thought to involve the induction of associative, NMDA receptor-dependent long-term potentiation (LTP) in the lateral amygdala. Using a combined genetic and electrophysiological approach, we show here that lack of a specific GABA(B) receptor subtype, GABA(B(1a,2)), unmasks a nonassociative, NMDA receptor-independent form of presynaptic LTP at cortico-amygdala afferents. Moreover, the level of presynaptic GABA(B(1a,2)) receptor activation, and hence the balance between associative and nonassociative forms of LTP, can be dynamically modulated by local inhibitory activity. At the behavioral level, genetic loss of GABA(B(1a)) results in a generalization of conditioned fear to nonconditioned stimuli. Our findings indicate that presynaptic inhibition through GABA(B(1a,2)) receptors serves as an activity-dependent constraint on the induction of homosynaptic plasticity, which may be important to prevent the generalization of conditioned fear.
Resumo:
Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue. Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup. A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.
Resumo:
We characterized changes in the visual behavior of mice in which a loss of the retinal pigment epithelium (RPE) was experimentally induced with intravenous (i.v.) administration of sodium iodate (NaIO3). We compared and correlated these changes with alterations in neural retinal structure and function. RPE loss was induced in 4-6 week old male C57BL/6 mice with an i.v. injection of 1% NaIO3 at three concentrations: 35, 50, or 70 mg/kg. At 1, 3, 7, 14, 21, and 28 days (d) as well as 6 months post injection (PI) a behavioral test was performed in previously trained mice to evaluate visual function. Eye morphology was then assessed for changes in both the RPE and neural retina. NaIO3-induced RPE degeneration was both dose and PI time dependent. Our low dose showed no effects, while our high dose caused the most damage, as did longer PI times at our intermediate dose. Using the intermediate dose, no changes were detectable in either visual behavior or retinal morphology at 1 d PI. However, at 3 d PI visual behavior became abnormal and patchy RPE cell loss was observed. From 7 d PI onward, changes in retinal morphology and visual behavior became more severe. At 6 months PI, no recovery was seen in any of these measures in mice administered the intermediate dose. These results show that NaIO3 dosage and/or time PI can be varied to produce different, yet permanent deficits in retinal morphology and visual function. Thus, this approach should provide a unique system in which the onset and severity of RPE damage, and its consequences can be manipulated. As such, it should be useful in the assessment of rescue or mitigating effects of retinal or stem cell transplantation on visual function.
Resumo:
Event-related potentials (ERPs) were used to trace changes in brain activity related to progress in second language learning. Twelve English-speaking exchange students learning German in Switzerland were recruited. ERPs to visually presented single words from the subjects' native language (English), second language (German) and an unknown language (Romansh) were measured before (day 1) and after (day 2) 5 months of intense German language learning. When comparing ERPs to German words from day 1 and day 2, we found topographic differences between 396 and 540 ms. These differences could be interpreted as a latency shift indicating faster processing of German words on day 2. Source analysis indicated that the topographic differences were accounted for by shorter activation of left inferior frontal gyrus (IFG) on day 2. In ERPs to English words, we found Global Field Power differences between 472 and 644 ms. This may due to memory traces related to English words being less easily activated on day 2. Alternatively, it might reflect the fact that--with German words becoming familiar on day 2--English words loose their oddball character and thus produce a weaker P300-like effect on day 2. In ERPs to Romansh words, no differences were observed. Our results reflect plasticity in the neuronal networks underlying second language acquisition. They indicate that with a higher level of second language proficiency, second language word processing is faster and requires shorter frontal activation. Thus, our results suggest that the reduced IFG activation found in previous fMRI studies might not reflect a generally lower activation but rather a shorter duration of activity.
Resumo:
BACKGROUND AND PURPOSE: There is a need to develop strategies to enhance the beneficial effects of motor training, including use-dependent plasticity (UDP), in neurorehabilitation. Peripheral nerve stimulation (PNS) modulates motor cortical excitability in healthy humans and could influence training effects in stroke patients. METHODS: We compared the ability of PNS applied to the (1) arm, (2) leg, and (3) idle time to influence training effects in the paretic hand in 7 chronic stroke patients. The end point measure was the magnitude of UDP. RESULTS: UDP was more prominent with arm stimulation (increased by 22.8%) than with idle time (by 2.9%) or leg stimulation (by 6.4%). CONCLUSIONS: PNS applied to the paretic limb paired with motor training enhances training effects on cortical plasticity in stroke patients.