919 resultados para bamboo tube
Resumo:
The technology of precision bending of tubes has recently increased in importance and is widely demanded for many industrial applications. However, whilst attention has been concentrated on automation and increasing the production rate of the bending machines, it seems that with one exception very little work has been done in order to understand and therefore fundamentally improve the bending process. A new development for the process of draw-bending of tubes, in which the supporting mandrel is axially vibrated at an ultrasonic frequency, has been perfected. A research programme was undertaken to study the mechanics of tube• bending under both vibratory and non-vibratory conditions. For this purpose, a conventional tube-bending machine was modified and equipped with an oscillatory system. Thin-walled mild steel tubes of different diameter to thickness ratios were bent to mean bend radii having various values from 1.5 to 2.0 times the tube diameter. It was found that the application of ultrasonic vibration reduces the process forces and that the force reduction increases with increasing the vibration amplitude. A reduction in the bending torque of up to 30 per cent was recorded and a reduction in the maximum tube-wall thinning of about 15 per cent was observed. The friction vector reversal mechanism as well as a reduction in friction account for the changes of the forces and the strains. Monitoring the mandrel friction during bending showed, in some cases, that the axial vibration reverses the mandrel .mean force from tension to compression and, thus, the mandrel is assisting the tube motion instead of resisting it. A theory has been proposed to describe the mechanics of deformation during draw-bending of tubes, which embodies the conditions of both "with" and "without" mandrel axial vibration. A theoretical analysis, based on the equilibrium of forces approach, has been developed in which the basic process parameters were taken into consideration. The stresses, the strains and the bending torque were calculated utilising this new solution, and a specially written computer programme was used to perform the computations. It was shown that the theory is in good agreement with the measured values of the strains under vibratory and non-vibratory conditions. Also, the predicted bending 'torque showed a similar trend to that recorded experimentally.
Resumo:
The conventional design of forming rolls depends heavily on the individual skill of roll designers which is based on intuition and knowledge gained from previous work. Roll design is normally a trial an error procedure, however with the progress of computer technology, CAD/CAM systems for the cold roll-forming industry have been developed. Generally, however, these CAD systems can only provide a flower pattern based on the knowledge obtained from previously successful flower patterns. In the production of ERW (Electric Resistance Welded) tube and pipe, the need for a theoretical simulation of the roll-forming process, which can not only predict the occurrence of the edge buckling but also obtain the optimum forming condition, has been recognised. A new simulation system named "CADFORM" has been devised that can carry out the consistent forming simulation for this tube-making process. The CADFORM system applied an elastic-plastic stress-strain analysis and evaluate edge buckling by using a simplified model of the forming process. The results can also be visualised graphically. The calculated longitudinal strain is obtained by considering the deformation of lateral elements and takes into account the reduction in strains due to the fin-pass roll. These calculated strains correspond quite well with the experimental results. Using the calculated strains, the stresses in the strip can be estimated. The addition of the fin-pass roll reduction significantly reduces the longitudinal compressive stress and therefore effectively suppresses edge buckling. If the calculated longitudinal stress is controlled, by altering the forming flower pattern so it does not exceed the buckling stress within the material, then the occurrence of edge buckling can be avoided. CADFORM predicts the occurrence of edge buckling of the strip in tube-making and uses this information to suggest an appropriate flower pattern and forming conditions which will suppress the occurrence of the edge buckling.
Resumo:
This paper presents the first part of a study of the combustion processes in an industrial radiant tube burner (RTB). The RTB is used typically in heat-treating furnaces. The work was initiated because of the need for improvements in burner lifetime and performance. The present paper is concerned with the flow of combustion air; a future paper will address the combusting flow. A detailed three-dimensional computational fluid dynamics model of the burner was developed, validated with experimental air flow velocity measurements using a split-film probe. Satisfactory agreement was achieved using the k-e turbulence model. Various features along the air inlet passage were subsequently analysed. The effectiveness of the air recuperator swirler was found to be significantly compromised by the need for a generous assembly tolerance. Also, a substantial circumferential flow maldistribution introduced by the swirler is effectively removed by the positioning of a constriction in the downstream passage.
Resumo:
This paper describes a study of the combustion process in an industrial radiant tube burner (RTB), used in heat treating furnaces, as part of an attempt to improve burner performance. A detailed three-dimensional Computational Fluid Dynamics model has been used, validated with experimental test furnace temperature and flue gas composition measurements. Simulations using the Eddy Dissipation combustion model with peak temperature limitation and the Discrete Transfer radiation model showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust (including NO). Other combustion and radiation models were also tested but gave inferior results in various aspects. The effects of certain RTB design features are analysed, and an analysis of the heat transfer processes within the burner is presented.
Resumo:
Internal haemorrhage, often leading to cardio-vascular arrest happens to be one of the prime sources of high fatality rates in mammals. We propose a simplistic model of fluid flow in our attempt to specify the location of the haemorrhagic spot, which, if located accurately, could possibly be operated leading to an instant cure. The model we employ for the purpose is basically fluid mechanical in origin and consists of a viscous fluid, pumped by a periodic force and flowing through an elastic tube. The analogy is with that of blood, pumped from the heart and flowing through an artery or vein. Our results, aided by graphical illustrations, match reasonably well with experimental observations.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Purpose: The purpose of this work was to investigate the breast dose saving potential of a breast positioning technique (BP) for thoracic CT examinations with organ-based tube current modulation (OTCM).
Methods: The study included 13 female patient models (XCAT, age range: 27-65 y.o., weight range: 52 to 105.8 kg). Each model was modified to simulate three breast sizes in standard supine geometry. The modeled breasts were further deformed, emulating a BP that would constrain the breasts within 120° anterior tube current (mA) reduction zone. The tube current value of the CT examination was modeled using an attenuation-based program, which reduces the radiation dose to 20% in the anterior region with a corresponding increase to the posterior region. A validated Monte Carlo program was used to estimate organ doses with a typical clinical system (SOMATOM Definition Flash, Siemens Healthcare). The simulated organ doses and organ doses normalized by CTDIvol were compared between attenuation-based tube current modulation (ATCM), OTCM, and OTCM with BP (OTCMBP).
Results: On average, compared to ATCM, OTCM reduced the breast dose by 19.3±4.5%, whereas OTCMBP reduced breast dose by 36.6±6.9% (an additional 21.3±7.3%). The dose saving of OTCMBP was more significant for larger breasts (on average 32, 38, and 44% reduction for 0.5, 1.5, and 2.5 kg breasts, respectively). Compared to ATCM, OTCMBP also reduced thymus and heart dose by 12.1 ± 6.3% and 13.1 ± 5.4%, respectively.
Conclusions: In thoracic CT examinations, OTCM with a breast positioning technique can markedly reduce unnecessary exposure to the radiosensitive organs in the anterior chest wall, specifically breast tissue. The breast dose reduction is more notable for women with larger breasts.