976 resultados para autoimmune regulator protein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the luteal phase endometrial expression of leukemia inhibitor factor (LIF), insulin-like growth factor 1 (IGF-1), progesterone receptor (PR), claudin 4 (CLDN4), vascular-endothelial growth factor receptor 3 (VEGFR-3), bone morphogenetic protein 4 (BMP-4) and citokeratin 7 (CK-7), we obtained luteal phase endometrial samples from 52 women. Samples were dated and integrated using a tissue microarray (TMA). Samples were immunostained for LIF, IGF-1, PR, CLDN4, VEGFR-3, BMP-4 and CK-7. Frequencies of positive expressions at the early, mid and late luteal phases were compared by two proportions test. Concomitant expression of these proteins was assessed with Chi-square or Fischer`s test. The frequency of LIF was positively correlated to the frequency of IGF-1 (r = 0.99; p < 0.05) and PR (r = 0.99; p < 0.05), and the correlation between IGF-1 and PR tended to be significant (r = 0.98; p < 0.1). The expression of PR was associated with the absence of CLDN4 (p < 0.001). Thus, expression of LIF, IGF-1 and PR are correlated during the luteal phase, and immunohistochemistry for these proteins might be used to assist in the assessment of endometrial maturation. In addition, the expression of CLDN4 and PR was not concomitant, warranting further investigation on the relationship of their endometrial expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PDI, a redox chaperone, is involved in host cell uptake of bacteria/viruses, phagosome formation, and vascular NADPH oxidase regulation. PDI involvement in phagocyte infection by parasites has been poorly explored. Here, we investigated the role of PDI in in vitro infection of J774 macrophages by amastigote and promastigote forms of the protozoan Leishmania chagasi and assessed whether PDI associates with the macrophage NADPH oxidase complex. Promastigote but not amastigote phagocytosis was inhibited significantly by macrophage incubation with thiol/PDI inhibitors DTNB, bacitracin, phenylarsine oxide, and neutralizing PDI antibody in a parasite redox-dependent way. Binding assays indicate that PDI preferentially mediates parasite internalization. Bref-A, an ER-Golgi-disrupting agent, prevented PDI concentration in an enriched macrophage membrane fraction and promoted a significant decrease in infection. Promastigote phagocytosis was increased further by macrophage overexpression of wild-type PDI and decreased upon transfection with an antisense PDI plasmid or PDI siRNA. At later stages of infection, PDI physically interacted with L. chagasi, as revealed by immunoprecipitation data. Promastigote uptake was inhibited consistently by macrophage preincubation with catalase. Additionally, loss-or gain-of-function experiments indicated that PMA-driven NADPH oxidase activation correlated directly with PDI expression levels. Close association between PDI and the p22phox NADPH oxidase subunit was shown by confocal colocalization and coimmunoprecipitation. These results provide evidence that PDI not only associates with phagocyte NADPH oxidase but also that PDI is crucial for efficient macrophage infection by L. chagasi. J. Leukoc. Biol. 86: 989-998; 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Primary Immunodeficiencies (PIDs) represent unique opportunities to understand the operation of the human immune system. Accordingly, PIDs associated with autoimmune manifestations provide insights into the pathophysiology of autoimmunity as well as into the genetics of autoimmune diseases (AID). Epidemiological data show that there are PIDs systematically associated with AID, such as immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), Omenn syndrome, autoinunune polyendocrinopathy-candidiasis-ectodertnal dystrophy (APECED), autoinumine lymphoproliferative syndrome (ALPS), and C1q deficiency, while strong associations are seen with a handful of other deficits. Conclusion We interpret such stringent disease associations, together with a wealth of observations in experimental systems, as indicating first of all that natural tolerance to body components is an active, dominant process involving many of the components that ensure responsiveness, rather than, as previously believed, the result of the mere purge of autoreactivities. More precisely, it seems that deficits of Treg cell development, functions, numbers, and T cell receptor repertoire are among the main factors for autoimmunity pathogenesis in many (if not all) PIDs most frequently presenting with autoimmune features. Clearly, other pathophysiological mechanisms are also involved in autoimmunity, but these seem less critical in the process of self-tolerance. Comparing the clinical picture of IPEX cases with those, much less severe, of ALPS or APECED, provides some assessment of the relative importance of each set of mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: The expression of sodium iodide symporter (NIS) is required for iodide uptake in thyroid cells. Benign and malignant thyroid tumors have low iodide uptake. However, previous studies by RT-PCR or immunohistochemistry have shown divergent results of NIS expression in these nodules. Objective: The objective of the study was to investigate NIS mRNA transcript levels, compare with NIS and TSH receptor proteins expression, and localize the NIS protein in thyroid nodules samples and their surrounding nonnodular tissues (controls). Design: NIS mRNA levels, quantified by real-time RT-PCR, and NIS and TSH receptor proteins, evaluated by immunohistochemistry, were examined in surgical specimens of 12 benign and 13 malignant nodules and control samples. Results: When compared with controls, 83.3% of the benign and 100% of the malignant nodules had significantly lower NIS gene expression. Conversely, 66.7% of the benign and 100% of malignant nodules had stronger intracellular NIS immunostaining than controls. Low gene expression associated with strong intracellular immunostaining was most frequently detected in malignant (100%) than benign nodules (50%; P = 0.005). NIS protein was located at the basolateral membrane in 24% of the control samples, 8.3% of the benign, and 15.4% of the malignant nodules. The percentage of benign nodules with strong TSH receptor positivity (41.6%) was higher than malignant (7.7%). Conclusion: We confirmed that reduced NIS mRNA expression in thyroid malignant nodules is associated with strong intracellular protein staining and may be related to the inability of the NIS protein to migrate to the cellular basolateral membrane. These results may explain the low iodide uptake of malignant nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To analyse and compare the expression of Palate, Lung, and Nasal Epithelium Clone (PLUNC) proteins in salivary glands from patients with and without AIDS (control group) using autopsy material. Methods: We analysed the expression of PLUNCs using immunohistochemistry in parotid (n = 45), submandibular (n = 47) and sublingual gland (n = 37) samples of AIDS patients [30 with normal histology, 21 with mycobacteriosis, 14 with cytomegalovirus (CMV) infection, 30 with chronic non-specific sialadenitis, and 30 HIV-negative controls. In situ hybridization (ISH) for SPLUNC 2 in the HIV-negative group was performed. Results: SPLUNC 1 expression was detected in the mucous acini of submandibular and sublingual glands, and SPLUNC 2 were seen in the serous cells. LPLUNC 1 expression was only positive in the salivary ducts. There was a higher expression of SPLUNC 2 in AIDS patients with CMV infection and mycobacteriosis when compared with all other groups. The intensity of staining for SPLUNC 2 was greater around the lesions than the peripheral ones. ISH for SPLUNC 2 showed perinuclear positivity in the serous cells in all HIV-negative cases. Conclusions: SPLUNC 1 and LPLUNC 1 proteins were similarly expressed in the salivary glands of AIDS patients and non-HIV patients. CMV infection and mycobacteriosis increase SPLUNC 2 expression in serous cells in the salivary gland of AIDS patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicao) and a more tolerant (M. acuminata x Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 degrees C for 15 d, at which point they were transferred to 19 degrees C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 degrees C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the alpha-and beta-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of studies have shown altered expression of secreted protein acidic and rich in cysteine (SPARC) and N-myc down-regulated gene (NDRG1) in several malignancies, including breast carcinoma; however, the role of these potential biomarkers in tumor development and progression is controversial. In this study, NDRG1 and SPARC protein expression was evaluated by immunohistochemistry on tissue microarrays containing breast tumor specimens from patients with 10 years of follow-up. NDRG1 and SPARC protein expression was determined in 596 patients along with other prognostic markers, such as ER, PR, and HER2. The status of NDRG1 and SPARC protein expression was correlated with prognostic variables and patient clinical outcome. Immunostaining revealed that 272 of the 596 cases (45.6%) were positive for NDRG1 and 431 (72.3%) were positive for SPARC. Statistically significant differences were found between the presence of SPARC and NDRG1 protein expression and standard clinicopathological variables. Kaplan-Meier analysis showed that NDRG1 positivity was directly associated with shorter disease-free survival (DFS, P < 0.001) and overall survival (OS, P < 0.001). In contrast, patients expressing low levels of SPARC protein had worse DFS (P = 0.001) and OS (P = 0.001) compared to those expressing high levels. Combined analysis of the two markers indicated that DFS (P < 0.001) and OS rates (P < 0.001) were lowest for patients with NDRG1-positive and SPARC-negative tumors. Furthermore, NDRG1 over-expression and SPARC down-regulation correlated with poor prognosis in patients with luminal A or triple-negative subtype breast cancer. On multivariate analysis using a Cox proportional hazards model, NDRG1 and SPARC protein expression were independent prognostic factors for both DFS and OS of breast cancer patients. These data indicate that NDRG1 over-expression and SPARC down-regulation could play important roles in breast cancer progression and serve as useful biomarkers to better define breast cancer prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematological disturbances are common in systemic lupus erythematous (SLE). Specifically, autoimmune hemolytic anemia (AHA) may manifest in SLE patients at the time of diagnosis or within the first year of the disease. AHA is often associated with thrombocytopenia, lupus nephritis, and central nervous system activity. In this study we investigated these associations in Brazilian patients with SLE. Forty-four consecutive SLE patients who had a history of AHA were age, gender, and disease duration matched with 318 SLE patients without AHA who formed the control group. All patients fulfilled the revised American College of Rheumatology criteria for SLE and were followed-up within our Service. Clinical and laboratorial manifestations were similar in both groups, except for the predominance of leukopenia, thrombocytopenia, and anti-dsDNA on univariate analysis in the AHA group. The multivariate logistic regression model revealed risk only for thrombocytopenia in the AHA group compared to the control group (odds ratio, 2.70; 95% confidence interval, 1.32-5.50). Our results corroborate previous data that AHA in SLE increases the risk of thrombocytopenia in individuals with SLE. This association suggests a common mechanism in AHA and SLE pathophysiologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory immune response directed against myelin antigens of the central nervous system. In its murine model, EAE, Th17 cells play an important role in disease pathogenesis. These cells can induce blood-brain barrier disruption and CNS immune cells activation, due to the capacity to secrete high levels of IL-17 and IL-22 in an IL-6 + TGF-beta dependent manner. Thus, using the oral tolerance model, by which 200 mu g of MOG 35-55 is given orally to C57BL/6 mice prior to immunization, we showed that the percentage of Th17 cells as well as IL-17 secretion is reduced both in the periphery and also in the CNS of orally tolerated animals. Altogether, our data corroborates with the pathogenic role of IL-17 and IFN-gamma in EAE, as its reduction after oral tolerance, leads to an overall reduction of pro-inflammatory cytokines, such as IL-1 alpha, IL-6, IL-9, IL-12p70 and the chemokines MIP-1 beta, RANTES, Eotaxin and KC in the CNS. It is noteworthy that this was associated to an increase in IL-10 levels. Thus, our data clearly show that disease suppression after oral tolerance induction, correlates with reduction in target organ inflammation, that may be caused by a reduced Th1/Th17 response. Crown Copyright (c) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crajoinas RO, Lessa LMA, Carraro-Lacroix LR, Davel APC, Pacheco BPM, Rossoni LV, Malnic G, Girardi ACC. Posttranslational mechanisms associated with reduced NHE3 activity in adult vs. young prehypertensive SHR. Am J Physiol Renal Physiol 299:F872-F881, 2010. First published July 14, 2010; doi:10.1152/ajprenal.00654.2009.-Abnormalities in renal proximal tubular (PT) sodium transport play an important role in the pathophysiology of essential hypertension. The Na(+)/H(+) exchanger isoform 3 (NHE3) represents the major route for sodium entry across the apical membrane of renal PT cells. We therefore aimed to assess in vivo NHE3 transport activity and to define the molecular mechanisms underlying NHE3 regulation before and after development of hypertension in the spontaneously hypertensive rat (SHR). NHE3 function was measured as the rate of bicarbonate reabsorption by means of in vivo stationary microperfusion in PT from young prehypertensive SHR (Y-SHR; 5-wk-old), adult SHR (A-SHR; 14-wk-old), and age-matched Wistar Kyoto (WKY) rats. We found that NHE3-mediated PT bicarbonate reabsorption was reduced with age in the SHR (1.08 +/- 0.10 vs. 0.41 +/- 0.04 nmol/cm(2)xs), while it was increased in the transition from youth to adulthood in the WKY rat (0.59 +/- 0.05 vs. 1.26 +/- 0.11 nmol/cm(2)xs). Higher NHE3 activity in the Y-SHR compared with A-SHR was associated with a predominant microvilli confinement and a lower ratio of phosphorylated NHE3 at serine-552 to total NHE3 (P-NHE3/total). After development of hypertension, P-NHE3/total increased and NHE3 was retracted out of the microvillar microdomain along with the regulator dipeptidyl peptidase IV (DPPIV). Collectively, our data suggest that the PT is playing a role in adapting to the hypertension in the SHR. The molecular mechanisms of this adaptation possibly include an increase of P-NHE3/total and a redistribution of the NHE3-DPPIV complex from the body to the base of the PT microvilli, both predicted to decrease sodium reabsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microtubule-associated protein Tau promotes the assembly and stability of microtubules in neuronal cells. Six Tau isoforms are expressed in adult human brain. All six isoforms become abnormally hyperphosphorylated and form neurofibrillary tangles in Alzheimer disease (AD) brains. In AD, reduced activity of phospholipase A(2) (PLA(2)), specifically of calcium-dependent cytosolic PLA(2) (cPLA(2)) and calcium-independent intracellular PLA(2) (iPLA(2)), was reported in the cerebral cortex and hippocampus, which positively correlated with the density of neurofibrillary tangles. We previously demonstrated that treatment of cultured neurons with a dual cPLA(2) and iPLA(2) inhibitor, methyl arachidonyl fluorophosphonate (MAFP), decreased total Tau levels and increased Tau phosphorylation at Ser(214) site. The aim of this study was to conduct a preliminary investigation into the effects of in vivo infusion of MAFP into rat brain on PLA(2) activity and total Tau levels in the postmortem frontal cortex and dorsal hippocampus. PLA(2) activity was measured by radioenzymatic assay and Tau levels were determined by Western blotting using the anti-Tau 6 isoforms antibody. MAFP significantly inhibited PLA(2) activity in the frontal cortex and hippocampus. The reactivity to the antibody revealed three Tau protein bands with apparent molecular weight of close to 40, 43 and 46 kDa in both brain areas. MAFP decreased the 46 kDa band intensity in the frontal cortex, and the 43 and 46 kDa band intensities in the hippocampus. The results indicate that in vivo PLA(2) inhibition in rat brain decreases the levels of total (nonphosphorylated plus phosphorylated) Tau protein and corroborate our previous in vitro findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substantial experimental evidence indicates that PAWR gene (PKC apoptosis WT1 regulator; also named PAR-4, prostate apoptosis response-4) is a central player in cancer cell survival and a potential target for cancer-selective targeted therapeutics. However, little is known about the role of PAR-4 in breast cancer. We investigated the possible role of PAR-4 expression in breast cancer. IHC results on tissue microarrays containing 1,161 primary breast tumor samples showed that 57% (571/995) of analyzable cases were negative for PAR-4 nuclear staining. Down-regulation of nuclear PAR-4 protein expression predicted a poor prognosis for breast cancer patients (OS; P=0.041, log-rank test). PAR-4 down-regulation also correlates with poor survival in the group of patients with luminal A subtype breast cancer (P=0.028). Additionally, in this large series of breast cancer patients, we show that ERBB2/HER2, EGFR and pAKT protein expression are significantly associated with shorter disease-free survival and overall survival, but the prognosis was even worse for HER2-positive, EGFR-positive or pAKT-positive breast cancer patients with tumors negative for nuclear PAR-4 expression. Furthermore, using three-dimensional (3D) cell culture we provide preliminary results showing that PAR-4 is highly expressed in the MCF10A cells inside the acini structure, suggesting that PAR-4 might have a role in the lumen acini formation. Taken together, our results provide, for the first time, evidence that PAR-4 may have a role in the process of the mammary eland morphogenesis and its functional inactivation is associated with tumor aggressive phenotype and might represent an additional prognostic and predictive marker for breast cancer.