920 resultados para aquatic macrophyte
Resumo:
Final Report
Resumo:
ID: 8906; issued December 19, 2000
Resumo:
ID: 8987; Annual Project Report for 2003, Project No. DLIA 2003-14 issued August 17, 2004
Resumo:
The results reported on were from a monitoring survey No. 9 undertaken between 9th and 12th September 2011 during construction period of the Bujagali Hydropower Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far, during construction phase of the project, eight monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011 and the present one, in September 2011. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: water quality determinants biology and ecology of fishes and food webs fish stock and fish catch including economic aspects of catch and sanitation/vector studies (bilharzias and river blindness)in addition to the above mentioned studies, a soil pH survey was undertaken on 15th October 2011 in the area behind the reservoir whose filling started a week earlier. The findings of pH status in the catchment of the dam are also contained in this report.
Resumo:
A field study of the invertebrate communities of the Nabugabo lakes(Nabugabo,Kayanja and Kayugi)showed the occurrence of copepoda, cladocera and rotifera(micro-invertebrates or zooplankton); Ephemeroptera and Diptera(macro-invertebrates or zoo-benthos). The most commonly encountered taxa were thermocyclops neglectus, moinamicrura,several rotiferan species(micro-invertebrates);P.adusta,chironomus, tanipodinae and trichoptera(macro- invertebrates). These organisms are assumed to be readily available as food sources for fishes in the Nabugabo lakes. Higher abundance and diversity of invertebrates occurred in Lake Nabugabo compared to Kayanja and Kayugi. There were no major differences in diversity and abundance of organisms between inshore and offshore areas of the different lakes. The highest diversity of macro-invertebrates(up to 15 taxa)was recovered from roots of macrophyte(higher water-based plants)such as Miscanthidium and Papyrus. The zooplankton of Nabugabo lakes typify a tropical assemblage with few species among genera and dominance of the communities by small-bodied organisms. Some taxa,common to many other water bodies such as Mesocyclops spp.,Calanoids(Copepoda), Caridina nilotica (Decapoda)were noticeably missing in the Nabugabo lakes community, probably due to environmental limitations including low conductivity and pH. Where they occur,these missing taxa have been shown to be key forage items for fishes and therefore their absence in Nabugabo lakes may have implications with respect to potential for fishery production. However other valuable invertebrate types such as cyclopoid copepods,ephemeroptera, chironomid and chaoborid larvae do occur in sufficiently high diversity and abundance to support viable fisheries resources. The high diversity and abundance of invertebrates associated with aquatic macrophytes such as Papyrus and Miscanthidium need to be protected through control of access and utilisation of shoreline vegetation.
Resumo:
The mobile water hyacinth, which was produced in growth zones, especially Murchison bay, was mainly exported to three sheltered storage bays (Thruston, Hannington and Waiya). Between 1996 and May 1998, the mobile form of water hyacinth occupied about 800 ha in Thruston bay, 750 ha in Hannington bay and 140 ha in Waiya bay). Biological control weevils and other factors, including localised nutrient depletion, weakened the weed that was confined to the bays and it sunk around October 1998. The settling to the bottom of such huge quantities of organic matter its subsequent decomposition and the debris from this mass was likely to have environmental impacts on biotic communities (e.g. fish and invertebrate), physico-chemical conditions (water quality), and on socio-economic activities (e.g. at fish landings, water abstraction, and hydro-power generation points). Sunken water hyacinth debris could also affect nutrient levels in the water column and lead to reduction in the content of dissolved oxygen. The changes in nutrient dynamics and oxygen levels could affect algal productivity, invertebrate composition and fish communities. Socio-economic impacts of dead sunken weed were expected from debris deposited along the shoreline especially at fish landings, water abstraction and hydropower generation points. Therefore, environmental impact assessment studies were carried out between 1998 and 2002 in selected representative zones of Lake Victoria to identify the effects of the sunken water hyacinth biomass.
Resumo:
Proliferation of invasive aquatic weeds has developed into a major ecological and socio economic issue for many regions of the world. As a consequence, inference on where to target control and other management efforts is critical in the management of aquatic weeds (Ibáñez et al., 2009). Notwithstanding, aquatic systems in Uganda in general and in the basins of Lakes Victoria and Kyoga in particular, have fallen victims to aquatic weeds invasion and subsequent infestation. If these aquatic weeds infestations are to be minimized and their impacts mitigated, management decisions ought to be based on up-to-date data and information in relation to location of infestation hotspots. Aquatic systems in the basins of the two production systems are important sources of livelihoods especially from fish production and trade yet they are prone to infestation by aquatic weeds. Thus, the invasion and subsequent infestation of aquatic ecosystems by aquatic weeds pose a major conservation threat to various aquatic resources (Catford et al., 2011; Kayanja, 2002). This paper examines the extent to which aquatic weeds have infested aquatic ecosystems in the basins of Lakes Victoria and Kyoga. The information is expected to guide management of major aquatic weeds through rational allocation of the scarce resources by targeting hotspots.
Resumo:
Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study we examined aquatic macroinvertebrate diversity (family and species level) and variation in community composition between 240 urban and 784 non-urban ponds distributed across the UK. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to non-urban ponds. Similar gamma diversity was found between the two groups at a family level, and while at a species level gamma diversity was higher in non-urban ponds, this difference was not statistically significant. The biological communities of urban ponds were markedly different to those of non-urban ponds and the variability in urban pond community composition was greater than that in non-urban ponds, contrary to previous work showing homogenisation of communities in urban areas. Positive spatial autocorrelation was recorded for urban and non-urban ponds at 0-50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100-150 km, and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways, promoting the development of a wide-range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating key ecosystem services including storm water storage and water treatment.
Resumo:
Weeds are plants growing in environments where they are undesirable. Aquatic weeds in fresh waters are nuisance or noxious plants growing in association with water in lakes, impoundment, rivers, canals, wetlands, etc. Some waterweeds cause very big financial loss through the socio economic, environmental and ecological impacts they inflict; and through the effort and expense required for their control. Other waterweeds are simply nuisance plants that cause minimal impacts. This paper is intended to introduce aquatic weeds outlining their characteristics, the main socio-economic and environmental impacts associated with them, and the control strategies often applied for their management.
Resumo:
This paper, based on the outcome of discussions at a NORMAN Network-supported workshop in Lyon (France) in November 2014 aims to provide a common position of passive sampling community experts regarding concrete actions required to foster the use of passive sampling techniques in support of contaminant risk assessment and management and for routine monitoring of contaminants in aquatic systems. The brief roadmap presented here focusses on the identification of robust passive sampling methodology, technology that requires further development or that has yet to be developed, our current knowledge of the evaluation of uncertainties when calculating a freely dissolved concentration, the relationship between data from PS and that obtained through biomonitoring. A tiered approach to identifying areas of potential environmental quality standard (EQS) exceedances is also shown. Finally, we propose a list of recommended actions to improve the acceptance of passive sampling by policy-makers. These include the drafting of guidelines, quality assurance and control procedures, developing demonstration projects where biomonitoring and passive sampling are undertaken alongside, organising proficiency testing schemes and interlaboratory comparison and, finally, establishing passive sampler-based assessment criteria in relation to existing EQS.
Resumo:
Uganda is rich in aquatic resources. Up to 17 % of the country's surface area is covered by Aquatic systems comprising five major lakes; Victoria, Albert, Kyoga, Edward, George, about 160 minor lakes, an extensive river and stream system, dams and ponds. These aquatic systems are associated with extensive swamps
Resumo:
The poster explains the effects of aquatic plants to fisheries and how they can be controlled.
Resumo:
This study presents an assessment of the contributions of various primary producers to the global annual production and N/P cycles of a coastal system, namely the Arcachon Bay, by means of a numerical model. This 3D model fully couples hydrodynamic with ecological processes and simulates nitrogen, silicon and phosphorus cycles as well as phytoplankton, macroalgae and seagrasses. Total annual production rates for the different components were calculated for different years (2005, 2007 and 2009) during a time period of drastic reduction in seagrass beds since 2005. The total demand of nitrogen and phosphorus was also calculated and discussed with regards to the riverine inputs. Moreover, this study presents the first estimation of particulate organic carbon export to the adjacent open ocean. The calculated annual net production for the Arcachon Bay (except microphytobenthos, not included in the model) ranges between 22,850 and 35,300 tons of carbon. The main producers are seagrasses in all the years considered with a contribution ranging from 56% to 81% of global production. According to our model, the -30% reduction in seagrass bed surface between 2005 and 2007, led to an approximate 55% reduction in seagrass production, while during the same period of time, macroalgae and phytoplankton enhanced their productions by about +83% and +46% respectively. Nonetheless, the phytoplankton production remains about eightfold higher than the macroalgae production. Our results also highlight the importance of remineralisation inside the Bay, since riverine inputs only fulfill at maximum 73% nitrogen and 13% phosphorus demands during the years 2005, 2007 and 2009. Calculated advection allowed a rough estimate of the organic matter export: about 10% of the total production in the bay was exported, originating mainly from the seagrass compartment, since most of the labile organic matter was remineralised inside the bay.
Resumo:
Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers ('hitch hiking'). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.