939 resultados para ammonia removal
Resumo:
Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study evaluated stress indicators in pacu exposed to ammonia in water under the following conditions: without NH4Cl (0.00 g/L); with 0.0078 g NH4Cl/L; and with 0.078 g NH4Cl/L (pH 8.3 and 27 ºC). After the salt dilution the water flow was interrupted and reestablished in 24 hours. Sampling occurred prior to the addition of NH4Cl (control) and after 12, 24 and 48 hours. Glycaemia increased only in fish with the highest salt concentration when compared with group control, regardless of time, and at 24 hours, regardless of treatment. Plasma ammonia, highest in fish exposed to the highest NH4Cl concentration, decreased progressively up to 48 hours. Plasma chloride only decreased in fish not exposed to salt when compared with control and osmolality increased after 24 hours. Hematocrit (Ht), number and volume of erythrocytes and hemoglobin did not change when NH4Cl was added; Ht decrease was reported after 12 hours, but it was not followed by the other blood parameters. The results show tolerance of the pacu to ammonia in the environment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction
Resumo:
Although the good performance in organic matter and suspended solids removal, the anaerobic reactors are unable to remove ammonia nitrogen from sewage, which makes indispensable to include a step of post-treatment for removal of ammonia or nitrate as necessary. This paper presents the performance of a new variant technology, where the nitrification unit, preceded by anaerobic units, is a submerged aerated biological filter, without continuous sludge discharge in their daily operation. The oxygenation system is very simple and inexpensive, consisting of perforated hoses and compressors. The anaerobic reactors are a septic tank with two chambers followed (8.82 m³) and two parallel anaerobic filters (36 m³ each) filled with ceramic bricks and conics plastic parts. Both followed aerated filters were filled with cut corrugated conduit. The study evaluated the behavior of the system with constant domestic sewage flow (10 m³/d) and different aeration conditions, are these: stage 01, when applied air flow of 0.01 m³ air/min in both aerated filter; stage 02, remained in the initial air flow rate in the second aerated filter and increased at the first to 0.05 m³ air/min; at last, at last, in stage 03, the air flow rate of first aerated filter was 0.10 m³ air/min and on the second remained at 0.01 m³ air/min. The filter FA1 received load of 0.41 kg COD/m³.d, 0.37 kg COD/m³.d and 0.26 kg COD/m³.d on phases 01, 02 and 03, respectively. The FA2 received loads of 0.25 kg COD/m³.d, 0.18 kg COD/m³.d and 0.14 kg COD/m³.d on phases 01, 02 and 03, respectively. During stage 01, were found the following results: 98% removals of BODtotal and 92% of CODtotal, with effluent presenting 9 mg/L of BODtotal final average and 53 mg/L of CODtotal average; suspended solids removals of 93%, with a mean concentration of 10 mg/L in the final effluent; 47% reduction of ammonia of FA2 to FAN 's, presenting average of 28 mg NNH3/ L of ammonia in the effluent with; the dissolved oxygen levels always remained around 2.0 mg/L. During stage 02, were found removals of 97% and 95% to BODtotal and suspended solids, respectively, with average final concentrations of 8 and 7 mg/L, respectively; was removed 60% of ammonia, whose final concentration was 16.3 mg NNH3/ L, and nitrate was increased to a final average concentration of 16.55 mg N-NO3/L. Finally, the stage 03 provided 6 mg/L of DBOtotal (98% removal) and 23 mg/L of CODtotal (95% removal) of final effluent concentrations average. At this stage was identified the higher ammonia oxidation (86%), with final effluent showing average concentration of 6.1 mg N-NH3/L, reaching a minimum of 1.70 mg N-NH3/L. In some moments, during stage 03, there was a moderate denitrification process in the last aerated filter. The average turbidity in the effluent showed around 1.5 NTU, proving the good biomass physical stability. Therefore, the results demonstrate the submerged biological filters potential, filled with high void ratio material (98%), and aerated with hoses and compressor adoption, in the carbonaceous and nitrogenous matter oxidation, also generating an effluent with low concentration of solids
Resumo:
The improper disposal of nitrogen in receiving water courses causes problems such as toxicity to living beings through the consumption of oxygen to meet the nitrogen demand, eutrophication and nitrate contamination of aquifers. For this reason it is often necessary to be carried out complementary treatment of wastewater to eliminate or reduce the concentration of this compound in the wastewater. The objective of this study is to evaluate the biological removal of nitrogen compounds using submerged aerated and anoxic filters as post-treatment of an anaerobic system, with low cost and innovative technology, which in previous studies has shown high removal efficiency of organic matter and great potential biological nitrogen compounds removal. The simple design with perforated hoses for air distribution and filling with plastic parts proved to be very efficient in relation to organic matter removal and nitrification. The system presented, in the best stage, efficiency in converting ammonia to nitrate by 71%, and produced a final effluent concentration below 10 mg / L of NH3-N. In addition, carbon concentration was removed by 77%, producing final effluent with 24 mg/L COD. However, denitrification in anoxic filter was not effective even with the addition of an external carbon source. There was a reduction of up to 56% of nitrogen caused by the process of simultaneous nitrification and denitrification (SND). The high voids space presented by this type of support material coupled with direct aeration of the sludge, allows the respiration of biomass retained between the endogenous phase, increased cell retention time and sludge retention capacity, producing a final effluent with turbidity less than 5 UT and total suspended solids around 5.0 mg/L
Resumo:
In the state of Rio Grande do Norte (RN), Brazil, there are about 80 sewage treatment systems being the predominant technology waste stabilization ponds. The Baldo s WWTP , due to its location and low availability of area, was designed as a hybrid conventional system (UASB reactor followed by activated sludge with biodiscs) at a tertiary level, being the most advanced WWTP in the State and also with the larger treatment capacity (1620 m3/h) .The paper presents the results of its performance based on samples collections from May to December 2012. Composite samples of the effluent of the grit chamber, UASB reactors, anoxic chambers, aeration tanks and treated effluent were collected weekly, every 4 hours for 24 hours. The results showed that the WWTP effluent presented adequate ranges of temperatures, pH and DO, however removal efficiencies of BOD and TSS were below the predicted by design. The UASB reactors also showed removals of BOD and TSS less than expected, due to the accumulation of sludge in the reactors, which eventually, was washed out in the effluent. The nitrification process was not satisfactory mainly due to problems in the oxygen distribution in the aeration tanks. The removal of ammonia and TKN were high, probably by the assimilation process
Resumo:
Waste stabilization ponds are the main technology in use for domestic sewage treatment in Rio Grande do Norte State (RN), northeast Brazil. The are around 80 systems, constructed mainly by municipal city halls, being series comprised by a primary facultative pond followed by two maturation ponds the most used configuration. Due to problems related with the production and destination of sludge and generation of bad odors, the designers have avoided the use of anaerobic lagoons. The majority of systems are rarely monitored to verify their efficiencies and to get new project parameters for future designing. This work has as purpose to make a diagnosis of efficiency of three series of waste stabilization pond series (WSPS) of Jardim Lola 1, Jardim Lola 2 and Beira Rio, located in the North Zone of the city of the Natal/RN, treating domestic raw sewage, on the removal of organic matter and thermotolerant coliform, comparing the operational conditions of the systems this inside of the bands foreseen in the project, through parameters BOD5, QOD, thermotolerant coliforms, dissolved oxygen, pH, temperature, ammoniac nitrogen, total and suspended solids. The work was carried through in the WSPS, all constituted by a primary facultative pond followed by two maturation ponds. Socioeconomic characteristics of population are predominantly low and all the plants are very near of the contributing basins. The series were monitored from of May the November of 2002, totalizing 20 collections of grab samples of raw sewage and ponds effluents between 8:00 and 9:50 h. The main aspect to be detached by the results was the great concentration of organic matter (BOD and COD) and microorganisms the raw sewage which were around two times more concentrated than those values foreseen one in project. Considering all series the highest removals of organic matter were observed in system Beira Rio (84 and 78% of BOD and COD, respectively), which presented high hydraulic detention time (TDH = 89 days). On the other hand, Jardim Lola 1 and Jardim Lola 2 presented a much lower values of HDT (36 days and 18 days respectively) and their removals of BOD and COD were the same (76% and 60%, respectively). The Beira Rio WSPS, was the most efficient verified in relation to solids and ammonia, proving the great influence of the operational variables such as HDT and applied surface organic loadings on the performance of pond series. Although the treatment plants have reached efficiencies of thermotolerant coliforms around 99,999%, the concentrations in the final effluent can be considered very high for launching in aquatic bodies, particularly those produced by Jardim Lola 1 and Jardim Lola 2 series
Resumo:
The rat tapeworm, Hymenolepis diminuta, induces mastocytosis, hypertrophy of enteric smooth muscle, alteration of enteric myoelectric activity, and slowed enteric transit of the rat host's intestine. This report examines the resolution of both tapeworm-induced mastocytosis and tissue changes during the period following removal of the tapeworm with Praziquantel (PZQ). The dynamics of the mucosal mast cell (MMC) population following removal of the tapeworms was assessed by histochemical identification of MMC and morphometric techniques. As a possible mechanism of MMC population regulation, MMC apoptosis was examined over the same experimental period using the in situ nick end labeling of fragmented DNA (TUNEL). Shifts in MMC numbers were correlated with functional and morphological changes of the intestine following removal of the adult-stage tapeworm. Ileal tissues from rats infected 32 days with H. diminuta (the beginning of plateau phase of tapeworm-induced chronic mastocytosis) were harvested 1, 2, 3, and 4 weeks after the PZQ treatment. Control ilea were obtained either from rats which were never infected and never treated with PZQ or from rats infected with H, diminuta for 32 days but not treated with PZQ. In order to detect MMC and apoptosis, tissue sections of ileum were doubled stained sequentially with Astra blue for MMC granules followed by a modification of the TUNEL technique. No alteration in MMC numbers were observed in PZQ-treated animals until 3 weeks after the removal of the tapeworms. The decline of MMC occurred in the mucosa and submucosa. MMC numbers first approached uninfected control levels at 4 weeks posttreatment. Coincident with the decline in mucosal MMC numbers, the rate of MMC entering apoptosis also declined. Simultaneously, ileal smooth muscle layers, hypertrophied by infection, and mucosal structures began the process of involution and atrophy. Apoptosis of MMC in the submucosa and muscularis mucosa was not detected. In conclusion, H. diminuta elicited mastocytosis and increased thickness of both mucosa and muscularis externa do not begin a decline toward control Values until 3 weeks after the parasites are gone and normal intestinal motility is restored. These data are consistent with the lack of MMC mediation of altered motility, and the decline in the rate of MMC apoptosis at 3 weeks post-PZQ suggests that apoptosis may play an important role in the involution of tapeworm-induced mastocytosis. (C) 1999 Academic Press.
Resumo:
The hydrodynamic characterization and the performance evaluation of an aerobic three phase fluidized bed reactor in wastewater fish culture treatment are presented in this report. The objective of this study was to evaluate the organic matter, nitrogen and phosphorous removal efficiency in a physical and biological wastewater treatment system of an intensive Nile Tilapia laboratory production with recirculation. The treatment system comprised of a conventional sedimentation basin operated at a hydraulic detention time HDT of 2.94 h and an aerobic three phase airlift fluidized bed reactor AAFBR operated at an 11.9 min HDT. Granular activated carbon was used as support media with density of 1.64 g/cm(3) and effective size of 0.34 mm in an 80 g/L constant concentration. Mean removal efficiencies of BOD, COD, phosphorous, total ammonia nitrogen and total nitrogen were 47%, 77%, 38%, 27% and 24%, respectively. The evaluated system proved an effective alternative for water reuse in the recirculation system capable of maintaining water quality characteristics within the recommended values for fish farming and met the Brazilian standards for final effluent discharges with exception of phosphorous values. (C) 2011 Elsevier B.V. All rights reserved.