821 resultados para alumínio


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfei çoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência Animal - FMVA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is little information regarding bond strengths of polyglass to metal alloys. This study evaluated the influence of bonding system on shear bond strength of a composite resin (Artglass/Heraeus Kulzer) to cast titanium (Ti). Twenty metallic structures (4mm in diameter, 5mm thick) of titanium grade I were cast shaped and abraded with 250mm aluminum oxide and separated into two groups. For each group was applied one bonding system (Siloc or Retention Flow) before opaque and dentin polymer superposition. This procedure was managed using teflon matrices. They were manipulated and polymerized according to the manufacturer's recommendations. The samples were stored in distilled water for 24 hours at 37º and thermocycled (5º and 55ºC/500 cycles). Shear bond strength tests were performed by using an Instron Universal testing machine at a crosshead speed of 5mm/min. Results were analyzed statistically with one-way ANOVA (a=0,5) and they indicated that the Retention Flow system was statistically better than Siloc (20.74 MPa and 11.65 MPa , respectively). It was possible to conclude that the bonding agent influenced the adhesion between polymer and cast titanium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the great development of organic and polymeric electroluminescent materials, the large scale commercial application of devices made with these materials seems conditioned to specific cases, mainly due to the high cost and the low durability, in compared to conventional technologies. In this study was produced electroluminescent devices by a process simple, drop casting. Were produced electroluminescent films containing Zn2SiO4:Mn immersed in a conductive polymer blend with different thicknesses. The morphological characteristics of these films were studied by scanning electronic microscopy. These films were used in the manufacture of electroluminescent devices, in which the light emission properties of the developed material were evaluated. The blend was composed of the conductive polymer Poly(o-methoxyaniline), doped with p-toluene sulfonic acid, and an insulating polymer, Poly(vinylidene fluoride) and its copolymer Poly(vinylidene fluoride-cotrifluoroethylene). To this blend was added Zn2SiO4:Mn, thereby forming the composite. A first set of devices was obtained using composites with different weight fraction of polymeric and inorganic phases, which were deposited by drop casting over ITO substrates. Upper electrodes of aluminum were deposited by thermal evaporation. The resulting device architecture was a sandwich type structure ITO/ composite/ Al. A second set of devices was obtained as self-sustaining films using the best composite composition obtained for the device of the first set. ITO electrodes were deposited by RF-Sputtering, in both faces of these films. The AC electrical characterization of the devices was made with impedance spectroscopy measurements, and the DC electrical characterization was performed using a source/ meter unit Keithley 2410. The devices light emission was measured using a photodiode coupled to a digital electrometer, Keithley 6517A. The devices electrooptical characterization showed that the...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the behavior of the falling motion of neodymium magnets, inside conductive a metallic duct made of copper, aluminum, brass and bronze. We obtain, analyze and present results involving relationships between material and dynamical properties of falling neodymium magnets with the mechanical and electrical properties of conductive materials, such as mass, electrical resistivity, electrical conductivity, length and external diameter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usually organic polymeric diodes are made with a semiconductor layer placed between two electrodes in a sandwich-like architecture, where the electrodes are deposited on the surfaces of a polymeric semiconductor film. This methodology leads to two main problems: i) the polymeric film top surface is rough and irregular, resulting in non-uniform electric field into the device; ii) during the deposition of metallic electrode in the top surface polymeric film, by thermal evaporation, occurs the diffusion of metal atoms into the polymeric film, changing the material electronic structure. Thus, the metal-semiconductor junction is not well defined, which is essential for the production of good quality Schottky diode, which exhibits ideality factor close to the unity and low turn-on voltage. In order to avoid these two problems, in the present research was proposed to manufacture an organic diode with the semiconductor polymeric layer deposited over bimetallic (gold and aluminum) interdigitated electrodes. The doping of the active layer was performed by immersing the device in hydrochloric acid solution with pH 2 during different times in order to promote different doping levels of the semiconductor polymer. Was verified that the proposed diode, which exhibits well-defined metal-semiconductor junction, operates as a Schottky diode, with good ideality factor, 10 ± 3, and low turn-on voltage, 1,2 ± 0,2 V, in comparison with conventional organic polymeric diodes. Contrasting with the ideality factor and turn-on voltage, the diode rectification ratio was obtained as 7, a value lower than the expected for a good organic diode. Was also showed that the diode characteristics were dependent on the semiconductor polymer doping level, and that the diode characteristics were optimized with doping promoted by immersion in the acid solution for times longer than 50 s. Furthermore, as was showed that the diodes properties are dependent on the semiconductor...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Bases Gerais da Cirurgia - FMB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)