946 resultados para alkaline comet assay
Resumo:
The original cellulose fibers and those treated by alkaline solution were both used to prepare the acrylic membranes. The two kinds of membranes were packed into the columns for high-performance immunoaffinity chromatography by the immobilization of protein A on them. It was observed that the alkaline treatment of the cellulose fiber decreased the pressure resistance of the membrane to the mobile phases and greatly increased the accessible volume to the proteins, but affected the adsorption capacity of human IgG on the protein A membrane columns less. There is little difference between those two kinds of membranes on the adsorption capacities of HIgG, which means that the alkaline treatment of the cellulose fiber only significantly changes the void volume inter-membrane, and the porosity and surface area of membrane less. Alkaline treatment of the cellulose fiber reduced the membrane-column efficiency significantly. Some typical examples for the immunoaffinity analysis of IgG from human and dog plasma on the protein A membrane columns are illustrated. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Cobalt boride precursors were synthesized via chemical reaction of aqueous sodium borohydride with cobalt chloride, and followed by heat-treating at various temperatures. The as-prepared Co-B catalysts were characterized and analyzed by X-ray diffraction (XRD), nitrogen adsorption-desorption and catalytic activity test; and were adopted to help accelerating hydrolysis reaction of NaBH4 alkaline solution. The Co-B catalyst treated at 500 degrees C exhibits the best catalytic activity, and achieves an average H, generation rate of 2970 ml/min/g, which may give a successive H, supply for a 481 W proton exchange membrane fuel cell (PEMFC) at 100% H-2 utilization. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: The etiologic diagnosis of community-acquired pneumonia (CAP) remains challenging in children because blood cultures have low sensitivity. Novel approaches are needed to confirm the role of Streptococcus pneumoniae. METHODS: In this study, pneumococcal aetiology was determined by serology using a subset of blood samples collected during a prospective multicentre observational study of children <15 years of age hospitalised in Belgium with X-ray-confirmed CAP. Blood samples were collected at admission and 3-4 weeks later. Pneumococcal (P)-CAP was defined in the presence of a positive blood or pleural fluid culture. Serotyping of Streptococcus pneumoniae isolates was done with the Quellung reaction. Serological diagnosis was assessed for nine serotypes using World Health Organization validated IgG and IgA serotype-specific enzyme-linked immunosorbent assays (ELISAs). RESULTS: Paired admission/convalescent sera from 163 children were evaluated by ELISA (35 with proven P-CAP and 128 with non proven P-CAP). ELISA detected pneumococci in 82.8% of patients with proven P-CAP. The serotypes identified were the same as with the Quellung reaction in 82% and 59% of cases by IgG ELISA and IgA ELISA, respectively. Overall, ELISA identified a pneumococcal aetiology in 55% of patients with non-proven P-CAP. Serotypes 1 (51.6%), 7F (19%), and 5 (15.7%) were the most frequent according to IgG ELISA. CONCLUSIONS: In conclusion, the serological assay allows recognition of pneumococcal origin in 55% of CAP patients with negative culture. This assay should improve the diagnosis of P-CAP in children and could be a useful tool for future epidemiological studies on childhood CAP etiology.
Resumo:
Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.
Resumo:
Phosphorylation of GTP-binding-regulatory (G)-protein-coupled receptors by specific G-protein-coupled receptor kinases (GRKs) is a major mechanism responsible for agonist-mediated desensitization of signal transduction processes. However, to date, studies of the specificity of these enzymes have been hampered by the difficulty of preparing the purified and reconstituted receptor preparations required as substrates. Here we describe an approach that obviates this problem by utilizing highly purified membrane preparations from Sf9 and 293 cells overexpressing G-protein-coupled receptors. We use this technique to demonstrate specificity of several GRKs with respect to both receptor substrates and the enhancing effects of G-protein beta gamma subunits on phosphorylation. Enriched membrane preparations of the beta 2- and alpha 2-C2-adrenergic receptors (ARs, where alpha 2-C2-AR refers to the AR whose gene is located on human chromosome 2) prepared by sucrose density gradient centrifugation from Sf9 or 293 cells contain the receptor at 100-300 pmol/mg of protein and serve as efficient substrates for agonist-dependent phosphorylation by beta-AR kinase 1 (GRK2), beta-AR kinase 2 (GRK3), or GRK5. Stoichiometries of agonist-mediated phosphorylation of the receptors by GRK2 (beta-AR kinase 1), in the absence and presence of G beta gamma, are 1 and 3 mol/mol, respectively. The rate of phosphorylation of the membrane receptors is 3 times faster than that of purified and reconstituted receptors. While phosphorylation of the beta 2-AR by GRK2, -3, and -5 is similar, the activity of GRK2 and -3 is enhanced by G beta gamma whereas that of GRK5 is not. In contrast, whereas GRK2 and -3 efficiently phosphorylate alpha 2-C2-AR, GRK5 is quite weak. The availability of a simple direct phosphorylation assay applicable to any cloned G-protein-coupled receptor should greatly facilitate elucidation of the mechanisms of regulation of these receptors by the expanding family of GRKs.