998 resultados para Young, Marissa
Resumo:
Prefrontal impairments have been hypothesized to be most strongly associated with the cognitive and emotional dysfunction in depression. Recently, white matter microstructural abnormalities in prefrontal lobe have been reported in elderly patients with ma
Resumo:
Dopamine (DA) D-1 receptor compounds were examined in monkeys for effects on the working memory functions of the prefrontal cortex and on the fine motor abilities of the primary motor cortex. The D-1 antagonist, SCH23390, the partial D-1 agonist, SKF38393, and the full D-1 agonist, dihydrexidine, were characterized in young control monkeys, and in aged monkeys with naturally occurring catecholamine depletion. In addition, SKF38393 was tested in young monkeys experimentally depleted of catecholamines with chronic reserpine treatment. Injections of SCH23390 significantly impaired the memory performance of young control monkeys, but did not impair aged monkeys with presumed catecholamine depletion. Conversely, the partial agonist, SKF38393, improved the depleted monkeys (aged or reserpine-treated) but did not improve young control animals. The full agonist, dihydrexidine, did improve memory performance in young control monkeys, as well as in a subset of aged monkeys. Consistent with D, receptor mechanisms, agonist-induced improvements were blocked by SCH23390. Drug effects on memory performance occurred independently of effects on fine motor performance. These results underscore the importance of DA D-1 mechanisms in cognitive function, and provide functional evidence of DA system degeneration in aged monkeys. Finally, high doses of D-1 agonists impaired memory performance in aged monkeys, suggesting that excessive D-1 stimulation may be deleterious to cognitive function.
Resumo:
Our previous studies demonstrated that huperzine A, a reversible and selective acetylcholinesterase inhibitor, exerts beneficial effects on memory deficits in various rodent models of amnesia. To extend the antiamnesic action of huperzine A to nonhuman primates, huperzine A was evaluated for its ability to reverse the deficits in spatial memory produced by scopolamine in young adult monkeys or those that are naturally occurring in aged monkeys using a delayed-response task. Scopolamine, a muscarinic receptor antagonist, dose dependently impaired performance with the highest dose (0.03 mg/kg, i.m.) producing a significant reduction in choice accuracy in young adult monkeys. The delayed performance changed from an average of 26.8/30 trials correct on saline control to an average of 20.2/30 trials correct after scopolamine administration. Huperzine A (0.01-0.1 mg/kg, i.m.) significantly reversed deficits induced by scopolamine in young adult monkeys on a delayed-response task; performance after an optimal dose (0.1 mg/kg) averaged 25.0/30 correct. In four aged monkeys, huperzine A (0.001-0.01 mg/kg, i.m.) significantly increased choice accuracy from 20.5/30 on saline control to 25.2/30 at the optimal dose (0.001 mg/kg for two monkeys and 0.01 mg/kg for the other two monkeys). The beneficial effects of huperzine A on delayed-response performance were long lasting; monkeys remained improved for about 24 h after a single injection of huperzine A. This study extended the findings that huperzine A improves the mnemonic performance requiring working memory in monkeys, and suggests that huperzine A may be a promising agent for clinical therapy of cognitive impairments in patients with Alzheimer's disease.
Resumo:
Orthopedic tissue engineering requires biomaterials with robust mechanics as well as adequate porosity and permeability to support cell motility, proliferation, and new extracellular matrix (ECM) synthesis. While collagen-glycosaminoglycan (CG) scaffolds have been developed for a range of tissue engineering applications, they exhibit poor mechanical properties. Building on previous work in our lab that described composite CG biomaterials containing a porous scaffold core and nonporous CG membrane shell inspired by mechanically efficient core-shell composites in nature, this study explores an approach to improve cellular infiltration and metabolic health within these core-shell composites. We use indentation analyses to demonstrate that CG membranes, while less permeable than porous CG scaffolds, show similar permeability to dense materials such as small intestine submucosa (SIS). We also describe a simple method to fabricate CG membranes with organized arrays of microscale perforations. We demonstrate that perforated membranes support improved tenocyte migration into CG scaffolds, and that migration is enhanced by platelet-derived growth factor BB-mediated chemotaxis. CG core-shell composites fabricated with perforated membranes display scaffold-membrane integration with significantly improved tensile properties compared to scaffolds without membrane shells. Finally, we show that perforated membrane-scaffold composites support sustained tenocyte metabolic activity as well as improved cell infiltration and reduced expression of hypoxia-inducible factor 1α compared to composites with nonperforated membranes. These results will guide the design of improved biomaterials for tendon repair that are mechanically competent while also supporting infiltration of exogenous cells and other extrinsic mediators of wound healing.
Resumo:
The current generation of advanced gravitational wave detectors utilize titania-doped tantala/silica multilayer stacks for their mirror coatings. The properties of the low-refractive-index silica are well known; however, in the absence of detailed direct measurements, the material parameters of Young's modulus and coefficient of thermal expansion (CTE) of the high refractive index material, titania-doped tantala, have been assumed to be equal to values measured for pure tantala coatings. In order to ascertain the true values necessary for thermal noise calculations, we have undertaken measurements of Young's modulus and CTE through the use of nanoindentation and thermal-bending measurements. The measurements were designed to assess the effects of titania doping concentration and post-deposition heat-treatment on the measured values in order to evaluate the possibility of optimizing material parameters to further improve thermal noise in the detector. Young's modulus measurements on pure tantala and 25% and 55% titania-doped tantala show a wide range of values, from 132 to 177 GPa, dependent on both titania concentration and heat-treatment. Measurements of CTE give values of (3.9 +/- 0.1) x 10^-6 K^-1 and (4.9 +/- 0.3) x 10^-6 K^-1 for 25% and 55% titania-doped tantala, respectively, without dependence on post-deposition heat-treatment.
Resumo:
Previous study and analysis of cytochrome b suggested that polyploidization event in the genus Tor occurred about 10 Mya ago. In order to understand evolutionary fates of Sox gene in the early stage of genome duplication at the nucleotide level, PCR surveys for Sox genes in three closely related cyprinid fishes T douronensis (2n = 100), T qiaojiensis (2n = ?), T sinensis (2n = 100) and their relative T brevifilis (2n = 50) were performed. Totally, 52 distinct Sox genes were obtained in these four species, representing SoxB, SoxC, and SoxE group. As expected, isoforms of some Sox genes correspond with the ploidy of species, such as two copies of Sox9a exist in tetraploid species. Analysis indicated that duplicated Sox gene pairs caused by polyploidization evolved independently of each other within polyploid species. Results of substitution rate showed nearly equal rate of nonsynonymous substitution of duplicated Sox orthologs among different polyploid species and their diploid relative orthologs, suggesting at the early stage of genome duplicated Sox orthologs are under similar selective constraints in different polyploidy species and their diploid relative at the amino acid level. All PCR fragments of Sox genes obtained in this study are not accompanied by obvious increase in mutations and pseudogene formation which means that they are under strong purifying selection, suggesting that they are functional at the DNA level. Cenealogical analysis revealed that T qiaojiensis was tetraploid, and T douronensis, T qiaojiensis as well as T sinensis had an allotetraploid ancestor. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion in the Bragg peak or the plateau region. At 10th day after irradiation, ovarian and uterine weights were measured: normal and atretic (identified with the oocyte to be degenerating or absent) primordial, primary and preantral follicles were identified in the largest cross-section of each ovary. Percentage (%) of normal follicles of each developmental stage of oogenesis was calculated. The data showed that compared to controls, there was a dose-related decrease in percentage of normal follicles in each developmental stage. And the weights of ovary and uterus were also reduced with doses of irradiation. Moreover, these effects were much more significant in the Bragg peak region and the region close to the Bragg peak than in the beam's entrance (the plateau region). Radiosensitivity varied in different follicle maturation stages. Primordial follicles, which are thought to be extremely sensitive to ionizing irradiation, were reduced by 86.6%, while primary and preantral follicles reduced only by 72.5% and 61.8% respectively, by exposure with 6 Gy of C-12(6+) ion in the Bragg peak region and the region close to the Bragg peak. The data suggested that due to their optimal depth-dose distribution in the Bragg peak region, heavy ions are ones of the best particles for radiotherapy of tumors located next of vital organs or/and surrounded by normal tissues, especially radiosensitive tissues such as gonads.
Resumo:
Porphyra yezoensis Ueda is an important marine aquaculture crop with single-layered gametophytic thalli. In this work, the influences of thallus dehydration level, cold-preservation (freezing) time, and thawing temperature on the photosynthetic recovery of young P. yezoensis thalli were investigated employing an imaging pulse-amplitude-modulation (PAM) fluorometer. The results showed that after 40 d of frozen storage when performing thallus thawing under 10 degrees C, the water content of the thalli showed obvious effects on the photosynthetic recovery of the frozen thalli. The thalli with absolute water content (AWC) of 10%-40% manifested obvious superiority compared to the thalli with other AWCs, while the thalli thawed at 20 degrees C showed very high survival rate (93.10%) and no obvious correlation between thallus AWCs and thallus viabilities. These results indicated that inappropriate thallus water content contributed to the cell damage during the freeze-thaw cycle and that proper thawing temperature is very crucial. Therefore, AWC between 10% and 40% is the suitable thallus water content range for frozen storage, and the thawing process should be as short as possible. However, it is also shown that for short-term cold storage the Porphyra thallus water content also showed no obvious effect on the photosynthetic recovery of the thalli, and the survival rate was extremely high (100%). These results indicated that freezing time is also a paramount contributor of the cell damage during the freeze-thaw cycle. Therefore, the frozen nets should be used as soon as time permits.
Resumo:
Commercial farming of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura in China and South Korea in the sea depends on three sources of seedlings: holdfast-derived regenerated seedlings, young plants from wild population and zygote-derived seedlings. Like many successfully farmed seaweed species, the sustainable development of Hizikia farming will rely on a stable supply of artificial seedlings via sexual reproduction under controlled conditions. However, the high rate of detachment of seedlings after transfer to open sea is one of the main obstacles, and has limited large-scale application of zygote-derived seedlings. To seek the optimal condition for growing seedlings on substratum in land-based tanks for avoidance of detachment in this investigation, young seedlings were grown in both outdoor tanks exposed directly to sunlight and in indoor raceway tanks in reduced, filtered sunlight. Results showed that young seedlings, immediately after fertilization, could withstand a daily fluctuation of direct solar irradiance up to a level of 1800 mu mol photons m(-1)s(-1), and maintained a faster growth rate than seedlings grown in indoor tanks. Detailed experiments by use of chlorophyll fluorescence measurements further demonstrated that the overnight (12 h) recovery of optimal fluorescence quantum yield (F-v/F-m) of seedlings after 1 h treatment at 40 degrees C was 98%, and the 48 h recovery of F-v/F-m of seedlings after 1 h exposure to 1800 mu mol m(-2)s(-1) was 92%. Forty-one-day-old seedlings showed no significant decrease of optimal fluorescence quantum yield at salinity ranging from 30 to 5 ppt for a treatment up to 17 h. Six-hour desiccation treatment did not have any influence on the optimal fluorescence quantum yield. Exposure to 18 mmol L-1 sodium hypochlorite for 10 min did not damage the PSII efficiency, and thus could be used to remove epiphytic algae. The strong tolerance of young seedlings to high temperature, high irradiance, low salinity and desiccation found in this investigation supports the view that mass production of Hizikia seedlings should be performed in ambient light and temperature instead of in shaded greenhouse tanks.