700 resultados para Wetland ecology - Western Australia
Resumo:
BACKGROUND: Community pharmacies are at the forefront of primary care providers and have an important role in the referral of patients to a medical practitioner for review when necessary. Chronic cough is a common disorder in the community and requires medical assessment. The proficiency of community pharmacy staff to refer patients with chronic cough is currently unknown. OBJECTIVE: To assess the ability of community pharmacy staff to recognize and medically refer patients with a chronic nonproductive cough. METHODS: Following ethics approval, a simulated patient study of 156 community pharmacies in Perth, Western Australia, was conducted over a 3-month period. Simulated patients presented to the pharmacy requesting treatment for a cough. The simulated patient required a referral based on a designated scenario. Demographic details, assessment questions, and advice provided were recorded by the simulated patient immediately postvisit. A logistic regression analysis was performed, with referral for medical assessment as the dependent variable. RESULTS: Of the 155 community pharmacies included in the analysis, 38% provided appropriate medical referral. Cough suppressants were provided as therapy in 72% of all visits. Predictors of medical referral were assessment of symptom duration, medical history, current medications being taken, frequency of reliever use, and the position of the pharmacy staff member conducting the consultation. A third of community pharmacies provided appropriate primary care by recommending medical referral advice to patients with chronic cough. The majority of pharmacy staff members acquired information from the patient that suggested a need for medical referral, yet did not provide referral advice. CONCLUSIONS: Appropriate medical referral is more likely when adequate assessment is undertaken and when a pharmacist is directly involved in the consultation. This highlights the need for pharmacies to ensure that processes are in place for patients to access the pharmacist.
Resumo:
While CPD is now a mandatory requirement for Australian pharmacists, there has been little research to identify preferred learning resources, or barriers and motivators for continuing education and CPD participation. This study aimed to identify post-registration learning trends of community pharmacists in western Australia, as well as their opinions on post-registration learning.
Resumo:
Background: Some Australian pharmacists use continuing education to maintain knowledge and acquire new information. There has been a progression from continuing education to continuing professional development (CPD) - a mandatory requirement for pharmacists in all jurisdictions of Australia. Aim: To identify post-registration learning trends of community pharmacists in Western Australia. Method: A questionnaire was developed and administered by face-to-face interviews with community pharmacists in metropolitan Perth. Pharmacists registered for less than 12 months and pharmacists working in hospitals were excluded. Results: 103 pharmacists were approached with a response rate of 95%. Journals (41%), reference books (23%) and the Internet (18%) were the most commonly used educational resources cited by pharmacists. Keeping scientific information up-to-date (39%) and gathering practical knowledge (22%) were the leading motivators for pharmacists to participate in continuing education. Factors that hindered participation in continuing education included lack of time (34%), family commitments (21%) and business commitments (21%). 79% of pharmacists agreed with the concept of mandatory CPD. 47% of pharmacists suggested that the primary sanction for not complying with mandatory CPD should be counselling to determine reasons for non-compliance. Conclusion: Community pharmacists preferred educational resources that were easily accessible at convenient times. Most pharmacists were able to fulfil the requirements of CPD, however, further educational support and promotion would ensure the successful uptake of CPD by community pharmacists in Western Australia.
Resumo:
Although freshwater wetlands are among the most productive ecosystems on Earth, little is known of carbon dioxide (CO2) exchange in low latitude wetlands. The Everglades is an extensive, oligotrophic wetland in south Florida characterized by short- and long-hydroperiod marshes. Chamber-based CO2 exchange measurements were made to compare the marshes and examine the roles of primary producers, seasonality, and environmental drivers in determining exchange rates. Low rates of CO2 exchange were observed in both marshes with net ecosystem production reaching maxima of 3.77 and 4.28 μmol CO2 m−2 s−1 in short- and long-hydroperiod marshes, respectively. Fluxes of CO2 were affected by seasonality only in the short-hydroperiod marsh, where flux rates were significantly lower in the wet season than in the dry season. Emergent macrophytes dominated fluxes at both sites, though this was not the case for the short-hydroperiod marsh in the wet season. Water depth, a factor partly under human control, significantly affected gross ecosystem production at the short-hydroperiod marsh. As Everglades ecosystem restoration proceeds, leading to deeper water and longer hydroperiods, productivity in short-hydroperiod marshes will likely be more negatively affected than in long-hydroperiod marshes. The Everglades stand in contrast to many freshwater wetlands because of ecosystem-wide low productivity rates.
Resumo:
Models of community regulation commonly incorporate gradients of disturbance inversely related to the role of biotic interactions in regulating intermediate trophic levels. Higher trophic-level organisms are predicted to be more strongly limited by intermediate levels of disturbance than are the organisms they consume. We used a manipulation of the frequency of hydrological disturbance in an intervention analysis to examine its effects on small-fish communities in the Everglades, USA. From 1978 to 2002, we monitored fishes at one long-hydroperiod (average 350 days) and at one short-hydroperiod (average 259 days; monitoring started here in 1985) site. At a third site, managers intervened in 1985 to diminish the frequency and duration of marsh drying. By the late 1990s, the successional dynamics of density and relative abundance at the intervention site converged on those of the long-hydroperiod site. Community change was manifested over 3 to 5 years following a dry-down if a site remained inundated; the number of days since the most recent drying event and length of the preceding dry period were useful for predicting population dynamics. Community dissimilarity was positively correlated with the time since last dry. Community dynamics resulted from change in the relative abundance of three groups of species linked by life-history responses to drought. Drought frequency and intensity covaried in response to hydrological manipulation at the landscape scale; community-level successional dynamics converged on a relatively small range of species compositions when drought return-time extended beyond 4 years. The density of small fishes increased with diminution of drought frequency, consistent with disturbance-limited community structure; less-frequent drying than experienced in this study (i.e., longer return times) yields predator-dominated regulation of small-fish communities in some parts of the Everglades.
Resumo:
Knowledge of movements and habitat use is necessary to assess a species’ ecological role and is especially important for mesopredators because they provide the link between upper and lower trophic levels. Using acoustic telemetry, we examined coarse-scale diel and seasonal movements of elasmobranch mesopredators on a shallow sandflat in Shark Bay, Western Australia. Giant shovelnose rays (Glaucostegus typus) and reticulate whiprays (Himantura uarnak) were most often detected in nearshore microhabitats and were regularly detected throughout the day and year, although reticulate whiprays tended to frequent the monitored array over longer periods. Pink whiprays (H. fai) and cowtail stingrays (Pastinachus atrus) were also detected throughout the day, but were far less frequently detected. Overall, there was no apparent spatial or temporal partitioning of the sandflats, but residency to the area varied between species. In addition, ray presence throughout the year suggests that previously observed differences in seasonal abundance are likely because of seasonal changes in habitat use rather than large-scale migrations. Continuous use of the sandflats and limited movements within this ray community suggests that rays have the potential to be a structuring force on this system and that focusing on nearshore habitats is important for managing subtropical ray populations.
Resumo:
Through the application of importance- performance analysis (/PA), the author investigated the conceptualization and measurement of service quality for tour operators in the scuba diving industry Findings from a study of consumer perceptions of service quality as they relate to a dive tour operator in Western Australia revealed the core service quality dimensions hat need to be improved for the operator and demonstrated the values and relative simplicity of the importance-performance analyses for dive tour operators generally
Resumo:
The names Mastogloia smithii Thwaites ex Smith and M. smithii var. lacustris Grunow have been attributed to a variety of related diatom morphologies, partly due to the poor availability of type material and complicated nomenclatural history. The history is detailed, clarifying the type morphologies of M. smithii and reconfirming a neglected elevation of M. smithii var. lacustris to M. lacustris (Grunow) Grunow. Populations reported as M. smithii and M. lacustris from the temperate zone (Ontario, Canada and Iowa and Michigan, USA), karstic wetlands of the subtropical Everglades (Florida, USA) and the tropics (Jamaica, Mexico and Belize) are compared with each other. Based on morphological differences including density of partecta, striae and areolae, M. calcarea sp. nov. and M. pseudosmithii sp. nov. are described from the Everglades and the Caribbean region, and a lectotype of M. smithii and a neotype of M. lacustris are designated.
Resumo:
Methanogenesis was studied in soils from two sawgrass wetlands of the Florida Everglades. Marl soils exhibited a significantly higher potential rate of methanogenesis than peat soils. In these wetlands, methanogenesis: (1) decreased rapidly with increasing soil depth, (2) increased at higher temperatures and lower Eh, (3) was stimulated by organic compounds (cellulose, glucose and acetate), and (4) remained unaffected by added ammonium. Lowering the Eh in the peat and marl soils with sulfide or sulfate stimulated methanogenesis. In January 1990, phosphate caused a significant increase in methanogenesis. The potential rates of methanogenesis decreased to undetectable levels when water levels dropped below the surface, and peaked one month after the start of the wet season. Methanogenesis appeared to be a relatively important process in carbon cycling in marl soils and these soils do not accumulate peat. Therefore, one possible explanation for peat accumulation in sawgrass wetlands may be their low rates of methanogenesis.
Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera
Resumo:
This study investigated the impacts of acidified seawater (pCO2 900 µatm) and elevated water temperature (+3 °C) on the early life history stages of Acropora spicifera from the subtropical Houtman Abrolhos Islands (28°S) in Western Australia. Settlement rates were unaffected by high temperature (27 °C, 250 µatm), high pCO2 (24 °C, 900 µatm), or a combination of both high temperature and high pCO2 treatments (27 °C, 900 µatm). There were also no significant differences in rates of post-settlement survival after 4 weeks of exposure between any of the treatments, with survival ranging from 60 to 70 % regardless of treatment. Similarly, calcification, as determined by the skeletal weight of recruits, was unaffected by an increase in water temperature under both ambient and high pCO2 conditions. In contrast, high pCO2 significantly reduced early skeletal development, with mean skeletal weight in the high pCO2 and combined treatments reduced by 60 and 48 %, respectively, compared to control weights. Elevated temperature appeared to have a partially mitigative effect on calcification under high pCO2; however, this effect was not significant. Our results show that rates of settlement, post-settlement survival, and calcification in subtropical corals are relatively resilient to increases in temperature. This is in marked contrast to the sensitivity to temperature reported for the majority of tropical larvae and recruits in the literature. The subtropical corals in this study appear able to withstand an increase in temperature of 3 °C above ambient, indicating that they may have a wider thermal tolerance range and may not be adversely affected by initial increases in water temperature from subtropical 24 to 27 °C. However, the reduction in skeletal weight with high pCO2 indicates that early skeletal formation will be highly vulnerable to the changes in ocean pCO2 expected to occur over the twenty-first century, with implications for their longer-term growth and resilience.
Resumo:
We acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at: Centre for Microscopy Characterisation and Analysis, The University of Western Australia; Electron Microscopy Unit, The University of New South Wales. These facilities are funded by the Universities, State and Commonwealth Governments. DW was funded by the European Commission and the Australian Research Council (FT140100321). This is ARC CCFS paper number XXX. We acknowledge Martin van Kranendonk, Owen Green, Cris Stoakes, Nicola McLoughlin, the late John Lindsay and the Geological Survey of Western Australia for fieldwork assistance, Thomas Becker for assistance with Raman microspectroscopy, Anthony Burgess from FEI for the preparation of one of the TEM wafers, and Russell Garwood, Tom Davies, Imran Rahman & Stephan Lautenschlager for training and advice on the SPIERS and AVIZO software suites. We thank Chris Fedo and an anonymous reviewer for comments that improved the manuscript.
Resumo:
We acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at: Centre for Microscopy Characterisation and Analysis, The University of Western Australia; Electron Microscopy Unit, The University of New South Wales. These facilities are funded by the Universities, State and Commonwealth Governments. DW was funded by the European Commission and the Australian Research Council (FT140100321). This is ARC CCFS paper number XXX. We acknowledge Martin van Kranendonk, Owen Green, Cris Stoakes, Nicola McLoughlin, the late John Lindsay and the Geological Survey of Western Australia for fieldwork assistance, Thomas Becker for assistance with Raman microspectroscopy, Anthony Burgess from FEI for the preparation of one of the TEM wafers, and Russell Garwood, Tom Davies, Imran Rahman & Stephan Lautenschlager for training and advice on the SPIERS and AVIZO software suites. We thank Chris Fedo and an anonymous reviewer for comments that improved the manuscript.
Resumo:
We acknowledge the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments. DW acknowledges funding from the European Commission and the Australian Research Council. This is publication number 838 from the Australian Research Council Centre of Excellence for Core to Crust Fluid Systems.
Resumo:
Marine heatwaves (MHWs) have been observed around the world and are expected to increase in intensity and frequency under anthropogenic climate change. A variety of impacts have been associated with these anomalous events, including shifts in species ranges, local extinctions and economic impacts on seafood industries through declines in important fishery species and impacts on aquaculture. Extreme temperatures are increasingly seen as important influences on biological systems, yet a consistent definition of MHWs does not exist. A clear definition will facilitate retrospective comparisons between MHWs, enabling the synthesis and a mechanistic understanding of the role of MHWs in marine ecosystems. Building on research into atmospheric heatwaves, we propose both a general and specific definition for MHWs, based on a hierarchy of metrics that allow for different data sets to be used in identifying MHWs. We generally define a MHW as a prolonged discrete anomalously warm water event that can be described by its duration, intensity, rate of evolution, and spatial extent. Specifically, we consider an anomalously warm event to be a MHW if it lasts for five or more days, with temperatures warmer than the 90th percentile based on a 30-year historical baseline period. This structure provides flexibility with regard to the description of MHWs and transparency in communicating MHWs to a general audience. The use of these metrics is illustrated for three 21st century MHWs; the northern Mediterranean event in 2003, the Western Australia ‘Ningaloo Niño’ in 2011, and the northwest Atlantic event in 2012. We recommend a specific quantitative definition for MHWs to facilitate global comparisons and to advance our understanding of these phenomena.