890 resultados para Western blotting


Relevância:

60.00% 60.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) is present in the arterial wall and is activated in response to cellular stressors that raise AMP relative to ADP/ATP. Activation of AMPK in vivo lowers blood pressure but the influence of hyperlipidemia on this response has not been studied. ApoE-/- mice on high fat diet for 6 weeks and age-matched controls were treated with the AMPK activator, AICAR daily for two weeks. Under anesthesia, the carotid artery was cannulated for blood pressure measurements. Aortic tissue was removed for in vitro functional experiments and AMPK activity was measured in artery homogenates by Western blotting. ApoE-/- mice had significantly raised mean arterial pressure; chronic AICAR treatment normalized this but had no effect in normolipidemic mice, whereas acute administration of AICAR lowered mean arterial pressure in both groups. Chronic AICAR treatment increased phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase in normolipidemic but not ApoE-/- mice. In aortic rings, AMPK activation induced vasodilation and an anticontractile effect, which was attenuated in ApoE-/- mice. This study demonstrates that hyperlipidemia dysregulates the AMPK pathway in the arterial wall but this effect can be reversed by AMPK activation, possibly through improving vessel compliance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peroxiredoxin-2 (PRDX-2) belongs to a family of thiol containing proteins and is important for antioxidant defense, redox signaling and cell function. This study examined whether lymphocyte PRDX-2 levels are altered over one month following ultra-endurance exercise. Nine middle-aged men participated in a 145 mile ultra-endurance running race event. Blood drawing was undertaken immediately before, upon completion/retirement, and at one, seven and twenty eight-days following the race. PRDX-2 levels were examined at each time-point, for all participants (n=9) by reducing SDS-PAGE and western blotting. Further analysis using non-reducing SDS-PAGE and western blotting was undertaken in a sub-group of men who completed the race (n = 4) to investigate PRDX-2 oligomeric state (indicative of oxidation state). Ultra-endurance exercise caused a significant alteration in lymphocyte PRDX-2 levels (F(4,32) 3.409, p=0.020, η2 =0.299): seven-days after the race PRDX-2 levels fell by 70% (p=0.013) and at twenty eight-days after the race returned to near-normal levels. PRDX-2 dimers (intracellular reduced PRDX-2 monomers) in three of the four participants, who finished the race, were increased upon race completion. Furthermore, PRDX-2 monomers (intracellular over-oxidized PRDX-2 monomers) in two of these four participants were present upon race completion, but absent seven-days after the race. This study found that PRDX-2 levels in lymphocytes were reduced below normal levels seven-days after an ultra-endurance running race. We suggest that excessive reactive oxygen species production, induced by ultra-endurance exercise may, in part, explain the depletion of lymphocyte PRDX-2 by triggering its turnover after oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is dependent on the oxidation state of cell surface and cytoplasmic protein-thiols. Here we describe the effects of depleting intracellular glutathione concentration for T cell exofacial expression of thioredoxin 1 and IL-2 production, and have determined the distribution of Trx1 with ageing. Using buthionine sulfoximine to deplete intracellular glutathione in Jurkat T cells we show using Western blotting that cell surface thioredoxin-1 is lowered and that the response to the lectin phytohaemagglutinin measured by ELISA as IL-2 production is also decreased. Using flow cytometry we show that the distribution of Trx1 on primary CD4+ T cells is age-dependent, with lower surface Trx1 expression and greater variability of surface expression observed with age. Together these data suggest that a relationship exists between the intracellular redox compartment and exofacial surface. Redox imbalance may be important for impaired T cell function during ageing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cysteine is a thiol containing amino acid that readily undergoes oxidation by reactive oxygen species (ROS) to form sulphenic (R-SOH) sulphinic (RSO2H) and sulphonic (RSO3H) acids. Thiol modifications of cysteine have been implicated as modulators of cellular processes and represent significant biological modifications that occur during oxidative stress and cell signalling. However, the different oxidation states are difficult to monitor in a physiological setting due to the limited availability of experimental tools. Therefore it is of interest to synthesise and use a chemical probe that selectively recognises the reversible oxidation state of cysteine sulphenic acid to understand more about oxidative signalling. The aim of this thesis was to investigate a synthetic approach for novel fluorescent probe synthesis, for the specific detection of cysteine sulphenic acids by fluorescence spectroscopy and confocal microscopy. N-[2-(Anthracen-2-ylamino)-2-oxoethyl]-3,5-dioxocyclohexanecarboxamide was synthesised in a multistep synthesis and characterised by nuclear magnetic resonance spectroscopy. The optimisation of conditions needed for sulphenic acid formation in a purified protein using human serum albumin (HSA) and the commercially available biotin tagged probe 3-(2,4-dioxocyclohexyl)propyl-5-((3aR,6S,6aS)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-6-yl)pentanoate (DCP-Bio1) were identified. This approach was extended to detect sulphenic acids in Jurkat T cells and CD4+ T cells pre- and post-stimulus. Buthionine sulfoximine (BSO) was used to manipulate the endogenous antioxidant glutathione (GSH) in human CD4+ T cells. Then the surface protein thiol levels and sulphenic acid formation was examined. T cells were also activated by the lectin phytohaemagglutinin-L (PHA-L) and formation of sulphenic acid was investigated using SDS-PAGE, western blotting and confocal microscopy. Resting Jurkat cells have two prominent protein bands that have sulphenic acid modifications whereas resting CD4+ T cells have an additional band present. When cells were treated with BSO the number of bands increased whereas activation reduced the number of proteins that were modified. The identities of the protein bands containing sulphenic acids were explored by mass spectrometry. Cysteine oxidation was observed in redox, metabolic and cytoskeletal proteins. In summary, a novel fluorescent probe for detection of cysteine sulphenic acids has been synthesised alongside a model system that introduces cysteine sulphenic acid in primary T cells. This probe has potential application in the subcellular localisation of cysteine oxidation during T cell signalling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of tamoxifen or aromatase inhibitor resistance is a major problem in the treatment of breast cancer. The molecular signaling mechanism of antiestrogen resistance is not clear. Understanding the mechanisms by which resistance to these agents arise could have major clinical implications for preventing or circumventing it. Therefore, in this dissertation we have investigated the molecular mechanisms underlying antiestrogen resistance by studying the contributions of reactive oxygen species (ROS)-induced redox signaling pathways in antiestrogen resistant breast cancer cells. Our hypothesis is that the conversion of breast tumors to a tamoxifen-resistant phenotype is associated with a progressive shift towards a pro-oxidant environment of cells as a result of oxidative stress. The hypothesis of this dissertation was tested in an in vitro 2-D cell culture model employing state of the art biochemical and molecular techniques, including gene overexpression, immunoprecipitation, Western blotting, confocal imaging, ChIP, Real-Time RT-PCR, and anchorage-independent cell growth assays. We observed that tamoxifen (TAM) acts like both an oxidant and an antioxidant. Exposure of tamoxifen resistant LCC2 cell to TAM or 17 beta-estradiol (E2) induced the formation of reactive oxidant species (ROS). The formation of E2-induced ROS was inhibited by co-treatment with TAM, similar to cells pretreated with antioxidants. In LCC2 cells, treatments with either E2 or TAM were capable of inducing cell proliferation which was then inhibited by biological and chemical antioxidants. Exposure of LCC2 cells to tamoxifen resulted in a decrease in p27 expression. The LCC2 cells exposed to TAM showed an increase in p27 phosphorylation on T157 and T187. Conversely, antioxidant treatment showed an increase in p27 expression and a decrease in p27 phosphorylation on T157 and T187 in TAM exposed cells which were similar to the effects of Fulvestrant. In line with previous studies, we showed an increase in the binding of cyclin E-Cdk2 and in the level of p27 in TAM exposed cells that overexpressed biological antioxidants. Together these findings highly suggest that lowering the oxidant state of antiestrogen resistant LCC2 cells, increases LCC2 susceptibility to tamoxifen via the cyclin dependent kinase inhibitor p27.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ageing is a natural phenomenon of the human lifecycle, yet it is still not understood what causes the deterioration of the human body near the end of the lifespan. One popular theory is the Free Radical Theory of Ageing, which proposes that oxidative damage to biomolecules causes ageing of tissues. The ageing population is affected by many chronic diseases. This study focused on sarcopenia (muscle loss in ageing) and obesity as two models for comparison of oxidative damage in muscle proteins in mice. The aim of the study was to develop advanced mass spectrometry methods to detect specific oxidative modifications to mouse muscle proteins, including oxidation, nitration, chlorination, and carbonyl group formation, but western blotting was also used to provide complementary information on the oxidative state of proteins from aged and obese muscle. Mass spectrometry proved to be a powerful tool, enabling identification of the types of modifications present, the sites at which they were present and percentage of the peptide populations that were modified. Targeted and semi-targeted mass spectrometry methods were optimised for the identification and quantitation of the oxidised residues in muscle proteins. The development of the quantitative methods enabled comparisons of mass spectrometry instruments. Both the Time of Flight and QTRAP systems showed advantages of using the different mass analysers to quantify oxidative modifications. Several oxidised residues were characterised and quantified in both the obese and sarcopenic models, and higher levels of oxidation were found compared to their control counterparts. Residues found to be oxidised were oxidation of proline, tyrosine and tryptophan, dioxidation of methionine, allysine and nitration of tyrosine. However quantification was performed on methionine dioxidation and cysteine trioxidation containing residues in SERCA. The combination of measuring residue susceptibility and functional studies could contribute to understanding the overall role of oxidation in ageing and obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Questo elaborato di tesi presenta uno studio volto a identificare il ruolo dell’autofagia nella patogenesi della neuropatia ottica ereditaria di Leber (LHON), una patologia neurodegenerativa mitocondriale dovuta a mutazioni nel mtDNA. Tali mutazioni generano difetti nella catena respiratoria, nelle vie apoptotiche mediate dai mitocondri e nella produzione di ROS; dati preliminari hanno dimostrato una correlazione tra le mutazioni LHON e l’omeostasi mitocondriale, regolata dai processi contrapposti di autofagia e mitobiogenesi. Secondo questa ipotesi, le alterazioni LHON aumentano il flusso autofagico soprattutto negli individui affetti, mentre i portatori di mutazione sani (carrier) risultano protetti da un importante incremento nella mitobiogenesi che agisce da meccanismo compensatorio. È stata dunque caratterizzata tramite Western Blotting l’espressione proteica di due marker autofagici, LC3 e p62, in PBMCs (Peripheral Blood Mononuclear Cells) estratte da pazienti LHON, affetti e carrier, e individui di controllo. Sono stati inoltre quantificati i livelli cellulari di due proteine della membrana interna mitocondriale, COX IV e SDHA, al fine di valutare la massa mitocondriale come parametro di confronto rispetto ai livelli di autofagia. È stata infine analizzata l’influenza dell’idebenone sull’autofagia e sulla massa mitocondriale, confrontando pazienti affetti in terapia con questo farmaco e pazienti affetti non trattati. Lo studio ha in parte avvalorato i risultati preliminari; l’elevata variabilità riscontrata porta però all’esigenza, nelle analisi future, di una maggiore campionatura, nonché di indagini di diversa natura condotte in parallelo per validare i risultati.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fetal growth restriction (FGR) is characterized by the birth weight and body mass below the tenth percentile for gestational age. FGR is a major cause of perinatal morbidity and mortality and babies born with FGR are prone to develop cardiovascular diseases later in life. The underlying pathology of FGR is inadequate placental transfer of nutrients from mother to fetus, which can be caused by placental insufficiency. Hydrogen sulfide (H2S), a gaseous messenger is produced endogenously by cystathionine-lyase (Cth), cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST), which are present in human placenta. Recently, we demonstrated that the dysregulation of H2S/Cth pathway is associated with preeclampsia and blockade of CSE activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in H2S pathways promote FGR and H2S donor restores fetal growth in mice where CBS or CSE activity has been compromised. Western blotting and qPCR revealed that placental CBS expressions were significantly reduced in women with FGR. ELISA analysis showed reduced placental growth factor production (PlGF) from first trimester (8–12 weeks gestation) human placental explants following inhibition of CBS activity by aminooxyacetic acid (AOA). Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction. This was associated with reduced PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor treated mice. These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Fetal growth restriction (FGR), which causes perinatal morbidity and mortality, is characterized by birth weight and body mass being below 10th percentile for gestational age. FGR babies are prone to develop cardiovascular diseases later in life. Inadequate placental transfer of nutrients from mother to fetus due to placental insufficiency is considered the underlying cause of FGR. Recently, we demonstrated that blockade of cystathionine-γ-lyase (CSE) activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in cystathionine-β-synthase (CBS) / H2S pathway may promote FGR. METHODS: Placental CBS expressions were determined in women with FGR (n=9) and normal controls (n=14) by Western blotting and real-time qPCR. ELISA was used to determine angiogenic factors levels in plasma and first-trimester (8–12 weeks gestation) human placental explants. Time pregnant mice were treated with CBS inhibitor, aminooxyacetic acid (AOA). Mean arterial blood pressure (MBP), histological assessments of placenta and embryos were performed. RESULTS: Placental CBS expressions were significantly reduced in women with FGR. Inhibition of CBS activity by AOA reduced PlGF production from first-trimester human placental explants, Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction, which was associated with reduced placental PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor-treated animals. Furthermore, H2S donor GYY4137 treatment restored fetal growth in pregnant mice exposed to high level of sFlt-1. CONCLUSIONS: These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia opening up the therapeutic potentials of H2S therapy in this condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Excitation-contraction coupling is an essential part of skeletal muscle contraction. It encompasses the sensing of depolarisation of the plasma membrane coupled with the release of Ca2+ from intracellular stores. The channel responsible for this release is called the Ryanodine receptor (RyR), and forms a hub of interacting proteins which work in concert to regulate the release of Ca2+ through this channel. The aim of this work was to characterise possible novel interactions with a proline-rich region of the RyR1, to characterise a monoclonal antibody (mAb VF1c) raised against a junctional sarcoplasmic reticulum protein postulated to interact with RyR1, and to characterise the protein recognised by this antibody in models of skeletal muscle disease such as Duchenne Muscular dystrophy (DMD) and sarcopenia. These experiments were performed using cell culture, protein purification via immunoprecipitation, affinity purification, low pressure chromatography and western blotting techniques. It was found that the RyR1 complex isolated from rat skeletal muscle co-purifies with the Growth factor receptor bound protein 2 (GRB2), very possibly via an interaction between the proline rich region of RyR1 and one of the SH3 domains located on the GRB2 protein. It was also found that Pleiotrophin and Phospholipase Cγ1, suggested interactors of the proline rich region of RyR1, did not co-purify with the RyR1 complex. Characterisation of mAb VF1c determined that this monoclonal antibody interacts with junctophilin 1, and binds to this protein between the region of 369-460, as determined by western blotting of JPH1 fragments expressed in yeast. It was also found that JPH1 and JPH2 are differentially regulated in different muscles of rabbit, where the highest amount of both proteins was found in the extensor digitorum longus (EDL) muscle. JPH1 and 2 levels were also examined in three rodent models of disease: the mdx mouse (a model of DMD), chronic intermittent hypoxia (CIH)-treated rat, and aged and adult mice, a model of sarcopenia. In the EDL and soleus muscle of CIH treated rats, no difference in either JPH1 or JPH2 abundance was detected in either muscle. An examination of JPH1 and 2 expression in mdx and wild type controls diaphragm, vastus lateralis, soleus and gastrocnemius muscle found no major differences in JPH1 abundance, while JPH2 was decreased in mdx gastrocnemius compared to wild type. In a mouse model of sarcopenia, JPH1 abundance was found to be increased in aged soleus but not in aged quadriceps, while in exercised quadriceps, JPH2 abundance was decreased compared to unexercised controls. Taken together, these results have implications for the regulation of RyR1 and JPH1 and 2 in skeletal muscle in both physiological and pathological states, and provide a newly characterised antibody to expand the field of JPH1 research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: The transient receptor potential (TRP) ion channels have emerged as important cellular sensors in both neuronal and non-neuronal cells, with TRPA1 playing a central role in nociception and neurogenic inflammation. The functionality of TRP channels has been shown to be modulated by inflammatory cytokines. The aim of this study was to investigate the effect of inflammation on odontoblast TRPA1 expression and to determine the effect of Biodentine (Septodent, Paris, France) on inflammatory-induced TRPA1 expression.

METHODS: Immunohistochemistry was used to study TRPA1 expression in pulp tissue from healthy and carious human teeth. Pulp cells were differentiated to odontoblastlike cells in the presence of 2 mmol/L beta-glycerophosphate, and these cells were used in quantitative polymerase chain reaction, Western blotting, calcium imaging, and patch clamp studies.

RESULTS: Immunofluorescent staining revealed TRPA1 expression in odontoblast cell bodies and odontoblast processes, which was more intense in carious versus healthy teeth. TRPA1 gene expression was induced in cultured odontoblastlike cells by tumor necrosis factor alpha, and this expression was significantly reduced in the presence of Biodentine. The functionality of the TRPA1 channel was shown by calcium microfluorimetry and patch clamp recording, and our results showed a significant reduction in tumor necrosis factor alpha-induced TRPA1 responses after Biodentine treatment.

CONCLUSIONS: In conclusion, this study showed TRPA1 to be modulated by caries-induced inflammation and that Biodentine reduced TRPA1 expression and functional responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Schistosomes are able to survive for prolonged periods in the blood system, despite continuous contact with coagulatory factors and mediators of the host immune system. Protease inhibitors likely play a critical role in host immune modulation thereby promoting parasite survival in this extremely hostile environment. Even though Kunitz type serine protease inhibitors have been shown to play important physiological functions in a range of organisms these proteins are less well characterised in parasitic helminths.

METHODS: We have cloned one gene sequence from S. mansoni, Smp_147730 (SmKI-1) which is coded for single domain Kunitz type protease inhibitor, E. coli-expressed and purified. Immunolocalisation and western blotting was carried out using affinity purified polyclonal anti-SmKI-1 murine antibodies to determine SmKI-1 expression in the parasite. Protease inhibitor assays and coagulation assays were performed to evaluate the functional roles of SmKI-1.

RESULTS: SmKI-1 is localised in the tegument of adult worms and the sub-shell region of eggs. Furthermore, this Kunitz protein is secreted into the host in the ES products of the adult worm. Recombinant SmKI-1 inhibited mammalian trypsin, chymotrypsin, neutrophil elastase, FXa and plasma kallikrein with IC50 values of 35 nM, 61 nM, 56 nM, 142 nM and 112 nM, respectively. However, no inhibition was detected for pancreatic elastase or cathepsin G. SmKI-1 (4 μM) delayed blood clot formation, reflected in an approximately three fold increase in activated partial thromboplastin time and prothrombin time.

CONCLUSIONS: We have functionally characterised the first Kunitz type protease inhibitor (SmKI-1) from S. mansoni and show that it has anti-inflammatory and anti-coagulant properties. SmKI-1 is one of a number of putative Kunitz proteins in schistosomes that have presumably evolved as an adaptation to protect these parasites from the defence mechanisms of their mammalian hosts. As such they may represent novel vaccine candidates and/or drug targets for schistosomiasis control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Deletions of chromosome 1 have been described in 7% to 40% of cases of myeloma with inconsistent clinical consequences. CDKN2C at 1p32.3 has been identified in myeloma cell lines as the potential target of the deletion. We tested the clinical impact of 1p deletion and used high-resolution techniques to define the role of CDKN2C in primary patient material.Experimental Design: We analyzed 515 cases of monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and newly diagnosed multiple myeloma using fluorescence in situ hybridization (FISH) for deletions of CDKN2C. In 78 myeloma cases, we carried out Affymetrix single nucleotide polymorphism mapping and U133 Plus 2.0 expression arrays. In addition, we did mutation, methylation, and Western blotting analysis.Results: By FISH we identified deletion of 1p32.3 (CDKN2C) in 3 of 66 MGUS (4.5%), 4 of 39 SMM (10.3%), and 55 of 369 multiple myeloma cases (15%). We examined the impact of copy number change at CDKN2C on overall survival (OS), and found that the cases with either hemizygous or homozygous deletion of CDKN2C had a worse OS compared with cases that were intact at this region (22 months versus 38 months; P = 0.003). Using gene mapping we identified three homozygous deletions at 1p32.3, containing CDKN2C, all of which lacked expression of CDKN2C. Cases with homozygous deletions of CDKN2C were the most proliferative myelomas, defined by an expression-based proliferation index, consistent with its biological function as a cyclin-dependent kinase inhibitor.Conclusions: Our results suggest that deletions of CDKN2C are important in the progression and clinical outcome of myeloma.